

Specification of Failure-Handling Requirements as

Policy Rules on Self-Adaptive Systems

João Pimentel1,2, Jaelson Castro1, Xavier Franch2

1 Universidade Federal de Pernambuco - UFPE, Centro de Informática, Recife, Brazil

{jhcp, jbc}@cin.ufpe.br
2 Universitat Politècnica de Catalunya, Omega-122, CP: 08034, Barcelona, Spain

franch@essi.upc.edu

Abstract. Most adaptive systems have compensation mechanisms for

recovering from or preventing failures. However, sometimes a compensation is

not essential. Hence, diagnosing and compensating each and every one of their

failures may be ineffective. Rather than polluting a requirements specification

with fine grained definition of failure-handling conditions, this work aims to

increase the flexibility of failure handling in self-adaptive systems using

tolerance policies. We allow the expression of conditions in which certain

failures may be ignored – i.e., conditions on which a failure will not be

compensated. Such policies may lead to reduced costs and performance

improvement. The FAST framework consists of the definition of a tolerance

policy, the mechanisms to evaluate this policy and a tool to aid the creation of

policies.

Keywords: Self-adaptive systems, Autonomic systems, Failure requirements,

Requirements engineering, Policy specification

1 Introduction

Adaptive systems are systems that are able to change their behavior in response to

changes on the environment and on the system itself [5]. Similarly to autonomics

systems [12], these systems should be able to change their behavior at runtime with

minimal human intervention [14][17], even in dynamic environments. In such a

system, failures are handled with compensations – or recovery activities. At design

time, possible failures are identified and responses to the respective failures are

defined. However, these responses may have a significant impact on non-functional

requirements, such as performance and cost. For instance, the failure of a free web-

service may be compensated through the usage of a similar but paid service.

Therefore, it is important to allow some flexibility on the definition of which failures

are to be compensated and on which scenario.

The notion that different failures have different impacts on different users and

contexts is widespread on the literature [4][11][21]. So, rather than defining this as

static requirements, we propose the usage of policies defined during the system

deployment or at run time. The concept of policies is used in Software Engineering to

allow users or system administrators to control some characteristics of a system,

without having to deal with implementation details [8]. In particular, this concept has

often been used by the network community [25][24]. In this work we are defining a

policy to enable the customization of the way that a system handles its failures.

The FAST Framework – Failure hAndling for Autonomic Systems – comprises the

policy specification, algorithms to process the policy and a supporting tool. This

framework was initially aimed to provide this flexibility for autonomic systems, more

specifically with a self-configuring architecture [19]. In this paper we are going to

present a generic version of this framework. Hence, a large variety of systems could

borrow the concepts and mechanisms presented here to enhance its failure handling.

This paper is organized as follows. Section 2 presents our approach for expressing

conditions in which a failure may be ignored – namely, the Tolerance Policy. The

algorithm for processing this policy is presented in Section 3. Section 4 describes an

agent that implements the policy algorithms and the tool developed to support the

policy. In section 5 we compare our research with related works. Finally, Section 6

summarizes our work and points out open issues.

2 Tolerance Policy

A policy may be seen as an set of policy rules [24], which is formed by a condition

and its corresponding actions [24][18]. When the conditions apply, the respective

actions are performed. The tolerance policy is concerned with the definition of

conditions for failures to be ignored. An excerpt of the conceptual model for this

policy is presented on Fig. 1.

Fig. 1. Conceptual model excerpt of the Tolerance Policy

A failure may be a high-level failure – such as the non-achievement of a goal – or a

low-level failure – such as an error reported by a software component. As default, for

all failures that have a recovery action this action will be performed when the failure

happens - only those failures explicitly mentioned in some rule of this policy will

have its failures disregarded, i.e., will not trigger a compensation. Failures may be

ignored depending on conditions that may be related to the system's context or to the

amount of occurrences of a failure. For each of these types of conditions, there is a

specific rule type: t.context (ContextCondition) and t.limit (LimitCondition). The 't' in

these type names stands for 'tolerance'.

Besides the list of failures that have recovery actions, another input for this policy

is the context model, or environmental model. The context model specifies the data

that will be monitored by the system. In self-adaptive systems this data is used to

identify when an adaptation should be performed and to identify the occurrence of

failures themselves [7]. In the FAST framework we are considering a context model

in the form of entities and their attributes [3], expressed in XML. When an attribute is

an enumeration, this XML also define its possible values. In Fig. 2 we show an

example of a context model. In this case, there are two context entities: Internet and

Calendar. The Internet entity has the attribute Speed, which possible values are zero,

low, average and high. The Weekday of the Calendar may be Sunday, Monday, and

so on, while the Hour is a number.

In the following sub-sections it will be described the two tolerance rule types –

t.context and t.limit. The regular expressions that precisely define the rules syntax are

presented in Appendix A.

Fig. 2. A context model example. This XML excerpt shows two context entities – internet and

calendar – and their attributes.

2.1 Tolerance Rule Type t.context

In order to express in which contexts certain failures may be ignored we use

t.context rules. This rule type has the following structure:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <root>

3 <ContextEntity name="internet">

4 <Attribute name="speed" type="enum">

5 <Value>zero</Value>

6 <Value>low</Value>

7 <Value>average</Value>

8 <Value>high</Value>

9 </Attribute>

10 </ContextEntity>

11 <ContextEntity name="calendar">

12 <Attribute name="weekday" type="enum">

13 <Value>sunday</Value>

14 <Value>monday</Value>

15 <Value>tuesday</Value>

16 <Value>wednesday</Value>

17 <Value>thursday</Value>

18 <Value>friday</Value>

19 <Value>saturday</Value>

20 </Attribute>

21 <Attribute name="hour" type="number">

22 </Attribute>

23 </ContextEntity>

24 </root>

failuresSet isAllowedToFailIf contextExpression

failuresSet is a set of failure identifiers divided by a colon (:), and that has at least

one failure - i.e., it cannot be an empty set. The allFailures reserved word may be

used to refer to all the recoverable failures of a system, without the need to name them

one by one.

isAllowedToFailIf is a fixed string to identify the rule type. contextExpression is a

logic expression, with the following structure:

contextEntity.attributeName operator attributeValue

contextEntity is any entity of the system's context model, and attributeName is the

name of an attribute of that entity. operator is a logic comparator, among the

following: equals (=), greater than (>), greater equals than (>=), lower than (<), lower

equals than (<=) and different (<>). AttributeValue is any possible value that entity’s

attribute may have. During the system execution, this value will be compared with the

actual value of that attribute, in order to evaluate if this context applies or not.

A rule of the t.context type has the following meaning: if a failure that is an

element of the failuresSet occur and the contextExpression currently applies, then that

failure will be ignored. In other words, no compensation will be performed for that

failure.

Usual situations in which a failure can be ignored are those related to date and

time, as in examples 1 and 2. Example 1 states that if a certain failureX occurs but it is

before 8 am, this failure will be ignored. The same applies for failureY. In Example

2, we express that the occurrence of any failure of that system will be ignored on

Sundays.

Ex.1: failureX: failureY isAllowedToFailIf calendar.hour<=8

Ex.2: allFailures isAllowedToFailIf calendar.day=Sunday

2.2 Tolerance Rule Type t.limit

In this rule type we are not concerned in defining specific conditions in which a

failure will be ignored. Instead, the concern is to define a maximum number of times

that some failure will occur without being compensated. This type has the following

structure:

failuresSet isAllowedToFailAtMost limit

failuresSet is defined as in t.context. The isAllowedToFailAtMost uniquely

identifies this rule type. limit is a positive integer number that indicates how many

consecutive occurrences of each failure of the failuresSet will be ignored, before a

compensation is triggered.

A rule of this type means that each failure of the failuresSet will have a limit

number of occurrences ignored. The failure number limit + 1 will be compensated,

and the occurrence counting of that failure will be reset. However, the failures that are

ignored due to a t.context rule are not included on this counting, as it will be explaind

in Section 3.

Note that, when using more than one failure in the failuresSet, we do not define a

limit of occurrences for a set of failures, but the limit for each failure of the

failuresSet. For instance, in Example 3 the limit of 4 occurrences is not for the two

failures altogether, it is for each failure separately (failureX and failureY). The rule in

Example 3 can be split in other two rules (examples 4 and 5), keeping the same

meaning.

Ex.3: failureX: failureY isAllowedToFailAtMost 4

Ex.4: failureX isAllowedToFailAtMost 4

Ex.5: failureY isAllowedToFailAtMost 4

3 Policy Processing Algorithm

The goal of the Tolerance Policy processing is to define all failures that will be

ignored. For that, the procedure described in Fig. 3 is used. The parameters are the

failure itself - i.e., a failed that actually occurred -, a list of tolerance rules, from the

policy, and a list of context entities, from which we can get the current attribute

values of that entities. The result of this procedure is the status of the current failure

occurrence: ignored or not ignored.

The first step is to check if there is a rule of the type t.context which failuresSet

contains that failure (line 1). If there is such a rule, we need to analyze each one of

these rules (line 2). If the rule is of the type t.context and its context expression

applies, we will label that element as ignored (lines 3 to 9). The analysis of the

context expressions is performed by the procedure EvaluateContext. The

EvaluateContext procedure trivially checks if the rules conditions apply [20]. After

analyzing all t.context rules for the failure occurrence, if it is not yet marked as

ignored (line 12), we will check if there is a rule of the type t.limit which failuresSet

contains that element (line 13). If there is such a rule, we will check if the limit for

that failure has already been reached (line 14). If the limit has not been reached yet,

we will increase the occurrence counter of that failure and mark it as ignored (lines 15

and 16). If the limit has been reached, we cannot ignore that occurrence - i.e, the

compensation will be required - and we reset the failure counter (line 18) for that

failure. As a result we return the status of the failure occurrence, indicating if it should

be ignored or not (line 22).

In summary, the t.context rules define conditions when the occurrence of a given

failure may be ignored, and t.limit rules define the maximum number of consecutive

occurrences of a given failure that can be ignored. However, the amount of

occurrences defined with a t.limit rule does not take into account the occurrences

already ignored by the t.context rules. In this sense, we can state that the rule type

t.context prevails upon the type t.limit. Given a t.context rule, the occurrence of a

failure in its failuresSet will always be ignored if its context expression is satisfied, in

despite of how many times this failure had been ignored before.

Fig. 3. Algorithm for processing the Tolerance Policy at runtime

The t.limit rules are concerned only with the failures that were not ignored during

the evaluation of the t.context rules. Note that the failures ignored due to a t.context

rule will not change the occurrence counting of a failure.

Rules can interact. Table 1 for example shows a log of occurrences for the failure

failureX, considering the two rule types expressed in examples 6 (a t.context rule) and

7 (a t.limit rule). That table shows the number of each failure occurrence and the

value of the calendar.day attribute, which is required to assess if any of these rules

apply. It also indicates if the failure occurrence was ignored as well as the rationale

for ignoring it – i.e., the rule that made the failure be ignored.

Ex.6: failureX isAllowedToFailIf calendar.day=sunday

Ex.7: failureX isAllowedToFailAtMost 3

In this example, the failure occurrences for which the rule of the example 6

applies are failures number 2 and 3. However it is not applicable for occurrences

number 1, 4, 5, 6 and 7, hence we have to evaluate the rule of the example 7. The

occurrences 1, 4 and 5 were ignored, since they were below the limit of 3 failure

occurrences expressed in the rule. The occurrence number 6, being the fourth

occurrence of that failure that were not ignored by a t.context, shall be compensated,

and the occurrence counter for that failure shall be reset. Since the occurrences

counter was reset, the occurrence 7 was also ignored for being below the limit of three

occurrences.

Data: f : Failure, TR : ToleranceRule[], CE : ContextEntity[]

1 if ∃ tr1 ∈ TR tr1.type = tcontext and tr1.failuresSet.contains(f) then

2 foreach trj in TR do

3 if trj.failuresSet.contains(f) then

4 if trj.type = tcontext then

5 if EvaluateContext(trj.expression, CE) then

6 f.status ← ignored

7 end

8 end

9 end

10 end

11 end

12 if f.status ≠ ignored then

13 if ∃ tr2 ∈ TR tr2.type = tlimit and tr2.failuresSet.contains(f) then

14 if f.failureCounter < tr2.limit then

15 f.status ← ignored

16 f.failureCounter ← f.failureCounter + 1

17 else

18 f.failureCounter ← 0

19 end

20 end

21 end

22 return f.status

Table 1. Occurrence log of the failure failureX

Occurence

number
Calendar.day Ignore failure? Rationale

1 Saturday Yes Ex. 7 (1st occurrence)

2 Sunday Yes Ex. 6

3 Sunday Yes Ex. 6

4 Monday Yes Ex. 7 (2nd occurrence)

5 Monday Yes Ex. 7 (3rd occurrence)

6 Monday No

7 Tuesday Yes Ex. 7 (1st occurrence)

4 Application

In order to use our approach we developed a policy manager component that

implements the algorithm presented in Section 3. This component is responsible for

loading the policy rules, presented in Section 2, and the context model. Besides, it

receives updates on the context and assess if a given failure should be ignored or not,

upon requests of other components.

For illustration purpose, on this paper we are presenting the Policy Manager

component encapsulated as an agent - the FAST Agent. This is a way of showing the

generic characteristic of this framework. We also envision the usage of the FAST

implementation as a crosscutting aspect [10], in synergy with works about aspectual

modeling on multi-agent systems [2][23].

The exchange of messages between a system using the FAST framework and the

FAST Agent itself is depicted in Fig. 4. The first two messages are related to the

initialization of the FAST Agent, by providing the Uniform Resource Locator (URL)

of the files that contain the policy and the context model for that system. Then it is

expected to occur some messages of the third kind, in order to inform an initial state

of the context. During the rest of the execution of the system, there will be an

exchange of messages to update the context (message 3) and to check if a failure shall

be ignored (message 4). Therefore, the agent is not responsible for identifying context

changes or the occurrence of failures - it receives this information from the system

itself, or from a monitor system.

The policy file is a text file in which each line contains a policy rule. The syntax of

the rules is described in Appendix A as Java regular expressions. The context model

is a XML file containing the context entities and their attributes. The context model

defines the data that will be monitored by the system, and that will be informed to the

FAST agent. This way it will be possible to assess if a given t.context rule applies on

a specific moment during the execution.

Besides the FAST Agent, we developed a tool for making it simpler to create the

policy rules. With this tool we are able to prevent syntax errors that could otherwise

occur. Fig. 5 shows an example of the creation of a t.context rule. The user selects

failures, from the list of failures that have recovery actions, and then defines in which

context that failure can occur without compensation. In this example, the failures are

regarding the updating of data on a movie system.

Fig. 4. Communication between a system and the FAST Agent

In order to prevent the user from deciding to ignore a critical failure, the list of

possible failures informed for this tool may be a partial model. Therefore, the reserved

word allFailures will not include the omitted failures.

The rule defined in the example of Fig. 5 is downloadPictures isAllowedToFailIf

calendar.weekday=saturday. This policy editor tool makes it easier for the user to

create and maintain the rules of a policy.

We performed a simulation of the execution of this system, considering two

variables: the amount of failures occurrence (low, medium and high occurrence) and

the context on which the failures occur. All simulations were performed considering

one t.context rule and one t.limit rule. The average result was a decrease of

approximately 41% on the number of required compensations, preventing the

computational resources waste of performing these unnecessary compensations. This

gives a general idea of the suitability of this approach. However, these results cannot

be generalized to every system. Hence, an analysis of the adoption of this framework

needs to be performed system-by-system.

5 Related Work

There is a series of languages for policy definition in the communication networks

domain. The CIM-SPL language [1] is a standard proposed by the Distributed

Management Task Force to specify network policies. Rei [13] is a policy definition

language based on deontic logic, on the same domain. Other languages include

Ponder [9], ACPL [22] and PDL [16]. These policies, besides targeting specific

domains, are far more computationally costly and complex than it was required for

the framework, motivating the creation of a language of our own.

Fig. 5. Wizard for creating a t.context rule

A more strongly related kind of policies are the policies for deteriorating systems.

They basically define conditions on which a software component should be repaired,

based on their age, failure rate [16] and their technological obsolescence [17]. Our

tolerance policy complements these policies, in the sense that we deal with another

aspect of failures.

Another way of providing the flexibility to the user would be by including the

failure handling in an options or a settings menu. This approach is potentially more

user-friendly, however it lacks in generalization, since not every system has a

graphical interface and, in those that have one, the user interfaces are usually

specifically designed for each system. Moreover, the inclusion of a new category of

options in the already overloaded options menu [15] could harm the usability of the

software as a whole.

6 Conclusion and Future Work

In this paper we present a generic version of the FAST framework, which provides

system users and administrators with the capability of defining conditions on which a

failure may be ignored. The contribution of this framework is twofold:

a) It enhances the failure handling on software systems by including a degree of

flexibility. This way the impact of a failure is not defined only by software engineers,

but also by users or system administrators;

b) It reduces the resources wasted when compensating failures, by reducing the

amount of failures that require compensation.

In this paper the policy itself was described, with its two rule types, as well as the

algorithm used to assess the rules at runtime. Using a policy is far different from

expressing these conditions directly on the requirements model, in the sense that the

model is designed by software engineers, whereas the policy is possibly designed by

the user.

The feasibility of the algorithm was shown by coding it as the behavior of a

software agent. A Policy Editor tool was also developed, making it easier for the user

to create and maintain the rules of a policy. Despite initial experiments showing an

overall suitability, further experiments on real-world software system need to be

performed, to analyze the usefulness and the effectiveness of our approach.

We also plan to increase the expressiveness of the policy rules, allowing the usage

of logic operators like AND, OR and XOR to create more complex conditions.

Furthermore, we want to be able to handle more complex rules, which can mix

different types of a rule. Lastly, we intend to incorporate a priority policy, to define

the priorities for the compensation of each failure.

Acknowledgements

We are thankful to Fabiano Dalpiaz, Paolo Giorgini and John Mylopoulos, for

inspiring this work and for their continuous feedback. This work was partially

supported by FACEPE, CNPQ, CAPES, UPV PAID-02-10, Erasmus Mundus

External Cooperation Window - Lot 15 Brasil and the Spanish research project

TIN2007-64753.

References

1. Agrawal, D.; Calo, S.; Lee, K.; Lobo, J. Issues in Designing a Policy Language for

Distributed Management of IT Infrastructures. In: Integrated Network Management, 2007.

IM'07. 10th IFIP/IEEE International Symposium on. [S.l.: s.n.], 2007. p. 30-39.

2. Alencar, F.; Castro, J.; Moreira, A.; Araujo, J.; Silva, C.; Ramos, R.; Mylopoulos, J.

Integration of Aspects with i* Models. In: Agent-Oriented Information Systems IV, LNCS

4898, Springer-Verlag, 2008, pp. 183-201.

3. Ali, R.; Dalpiaz, F.; Giorgini, P. A goal modeling framework for self-contextualizable

software. In: Lecture Notes in Business Information Processing, v. 29. p. 326- 338, .

Berlin Heidelberg: Springer, 2009.

4. Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure

Computing, IEEE Computer Society, Los Alamitos, CA, USA, v. 1, p. 11-33, 2004. ISSN

1545-5971.

5. Cheng, Betty H.C., de Lemos, Rogério, Giese, Holger, Inverardi, Paola, and Magee, Jeff.

Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, v.

5525. Berlin Heidelberg: Springer, 2009.

6. Clavareau, J.; Labeau, P. Maintenance and replacement policies under technological

obsolescence. Reliability Engineering and System Safety, Elsevier, v. 94, n. 2, p. 370-381,

2009.

7. Dalpiaz, F.; Giorgini, P.; Mylopoulos, J. An architecture for requirements-driven self-

reconfiguration. In: ECK, P. van; GORDIJN, J.; WIERINGA, R. (Ed.). CAiSE 2009.

Lecture Notes in Computer Science, v. 5565, p. 246-260. ISBN 978-3-642-02143-5.

8. Damianou, N. Dulay, N.; Lupu, E.; Sloman, M.; Tonouchi, T. Tools for domain-based

policy management of distributed systems. In: Proceedings of the IEEE/IFIP Network

Operations and Management Symposium (NOMS 2002), pages 203–217, 2002.

9. Damianou, N.; Dulay, N.; Lupu, E.; Sloman, M. The ponder policy specification language.

In: LECTURE NOTES IN COMPUTER SCIENCE. [S.l.]: Springer-Verlag, 2001. p. 18-

38.

10. E. Figueiredo, C. Sant'Anna, A. Garcia, and C. Lucena. Applying and Evaluating

Concern-Sensitive Design Heuristics. XXIII Brazilian Symposium on Software

Engineering, 2009, pp. 83-93.

11. Hiltunen, M. A.; Immanuel, V.; Schlichting, R. D. Supporting customized failure models

for distributed software. Distributed Systems Engineering, v. 6, 1999.

12. Horn, P. Autonomic computing: IBM's Perspective on the State of Information

Technology. IBM, 2001.

13. Kagal, L.; Finin, T.; Joshi, A. A policy language for a pervasive computing environment.

In: POLICY '03: Proceedings of the 4th IEEE International Workshop on Policies for

Distributed Systems and Networks. Washington, DC, USA: IEEE Computer Society,

2003. p. 63. ISBN 0-7695-1933-4.

14. Kephart, J. O.; Chess, D. M. The vision of autonomic computing. Computer, IEEE

Computer Society Press, Los Alamitos, CA, USA, v. 36, n. 1, p. 41-50, 2003. ISSN 0018-

9162.

15. Liaskos, S.; Lapouchnian, A.; Wang, Y.; Yu, Y.; Easterbrook, S. M. Configuring Common

Personal Software: a Requirements-Driven Approach. In Proceedings of the 13th IEEE

International Conference on Requirements Engineering (RE), 2005.

16. Lobo, J.; Bhatia, R.; Naqvi, S. A policy description language. In: AAAI '99/IAAI'99:

Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh

Innovative applications of artificial intelligence conference. Menlo Park, CA, USA:

American Association for Artificial Intelligence, 1999. p. 291-298. ISBN 0-262-51106-1.

17. Müller, H. A.; O'Brien, L.; Klein, M.; Wood, B. Autonomic Computing. CMU/SEI-2006-

TN-006. [S.l.], 2006.

18. Ouda, A.; Lutfiyya, H.; Bauer, M. Towards self-configuring policy-based management

systems. In: POLICY '08: Proceedings of the 2008 IEEE Workshop on Policies for

Distributed Systems and Networks. Washington, DC, USA: IEEE Computer Society,

2008. p. 215-218. ISBN 978-0-7695-3133-5.

19. Pimentel, J.; Santos, E.; Castro, J. Conditions for ignoring failures based on a requirements

model. In: Proceedings of the 22nd International Conference on Software Engineering and

Knowledge Engineering (SEKE). p. 48-53, 2010.

20. Pimentel, J. High Level Failure Treatment for Self-Configuring Systems: The FAST

Approach (In Portuguese: Tratamento de Falhas de Alto-Nível para Sistemas Auto-

Configuráveis: A abordagem FAST). MSc Dissertation. Federal University of

Pernambuco, 2010.

21. Rinner, B. Detecting and Diagnosing Faults. In Telematik, 8(2), p. 6-8, 2002.

22. Scarlett, K. Solutions in action: Creating policy for action-based decisions in PMAC.

Agosto 2006. Web-site. Last Access: 28th of November, 2010. Available on:

http://www.ibm.com/developerworks/library/ac-naction1.html

23. Silva, C.; Lucena, M.; Castro, J.; Araujo, J.; Moreira, A.; Alencar, F. Support for aspectual

modeling to Multiagent system architecture. In: ICSE Workshop on Aspect-Oriented

Requirements Engineering and Architecture Design, 2009 (EA´09), 2009, Vancouver.

Procedings of ICSE Workshop on Aspect-Oriented Requirements Engineering and

Architecture Design, 2009 (EA´09), 2009. p. 38-43.

24. Stone, G.; Lundy, B.; Xie, G. Network policy languages: A survey and a new approach.

Technical report, Defense Technical Information Center OAI-PMH Repository, 2003.

25. Strassner, J.; Samudrala, S.; Cox, G.; Liu, Y.; Jiang, M.; Zhang, J.; Meer, S.; Foghl´u, M.;

Donnelly, W. The design of a new context-aware policy model for autonomic networking.

In ICAC ’08: Proceedings of the 2008 International Conference on Autonomic

Computing, pages 119–128, Washington, DC, USA, 2008. IEEE Computer Society.

26. Wang, H. A survey of maintenance policies of deteriorating systems. European Journal of

Operational Research, v. 139, p. 469-489(21), 2002.

Appendix A: Regular expressions

This Appendix presents the Java regular expressions used to define the syntax of
the policy rules.

BASIC EXPRESSIONS:

Failure identifier: [a-z][a-zA-Z]*

Failures set: [a-z][a-zA-Z]*(:[a-z][a-zA-Z]*)*

Positive integer: [0-9]*[1-9][0-9]*

Undefined amount of whitespaces: \\s+

Context expression (structure): ContextEntity.AttributeName operator
 AttributeValue

Context expression (regular expression): [a-zA-Z]+\\.[a-zA-Z]+
 (=|>|>=|<|<=|<>)[a-zA-Z0-9]+

RULE TYPES:

T.context (structure): failuresSet isAllowedToFailIf contextExpression

T.context (regular expression): ^[a-z][a-zA-Z]*(:[a-z][a-zA-Z]*)*
 \\s+isAllowedToFailIf\\s+[a-zA-Z]+

 \\.[a-zA-Z]+(=|>|>=|<|<=|<>)[a-zA-Z0-9]+$

T.limit (structure): failuresSet isAllowedToFailAtMost limit

T.limit (regular expression): ^[a-z][a-zA-Z]*(:[a-z][a-zA-Z]*)*
 \\s+isAllowedToFailAtMost\\s+[0-9]*[1-9][0-9]*$

