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Abstract. Most adaptive systems have compensation mechanisms for 

recovering from or preventing failures. However, sometimes a compensation is 

not essential. Hence, diagnosing and compensating each and every one of their 

failures may be ineffective. Rather than polluting a requirements specification 

with fine grained definition of failure-handling conditions, this work aims to 

increase the flexibility of failure handling in self-adaptive systems using 

tolerance policies. We allow the expression of conditions in which certain 

failures may be ignored – i.e., conditions on which a failure will not be 

compensated. Such policies may lead to reduced costs and performance 

improvement.  The FAST framework consists of the definition of a tolerance 

policy, the mechanisms to evaluate this policy and a tool to aid the creation of 

policies. 
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1   Introduction 

Adaptive systems are systems that are able to change their behavior in response to 

changes on the environment and on the system itself [5]. Similarly to autonomics 

systems [12], these systems should be able to change their behavior at runtime with 

minimal human intervention [14][17], even in dynamic environments. In such a 

system, failures are handled with compensations – or recovery activities. At design 

time, possible failures are identified and responses to the respective failures are 

defined. However, these responses may have a significant impact on non-functional 

requirements, such as performance and cost. For instance, the failure of a free web-

service may be compensated through the usage of a similar but paid service. 

Therefore, it is important to allow some flexibility on the definition of which failures 

are to be compensated and on which scenario.  

The notion that different failures have different impacts on different users and 

contexts is widespread on the literature [4][11][21]. So, rather than defining this as 

static requirements, we propose the usage of policies defined during the system 

deployment or at run time. The concept of policies is used in Software Engineering to 



 

allow users or system administrators to control some characteristics of a system, 

without having to deal with implementation details [8]. In particular, this concept has 

often been used by the network community [25][24]. In this work we are defining a 

policy to enable the customization of the way that a system handles its failures. 

The FAST Framework – Failure hAndling for Autonomic Systems – comprises the 

policy specification, algorithms to process the policy and a supporting tool. This 

framework was initially aimed to provide this flexibility for autonomic systems, more 

specifically with a self-configuring architecture [19]. In this paper we are going to 

present a generic version of this framework. Hence, a large variety of systems could 

borrow the concepts and mechanisms presented here to enhance its failure handling. 

This paper is organized as follows. Section 2 presents our approach for expressing 

conditions in which a failure may be ignored – namely, the Tolerance Policy. The 

algorithm for processing this policy is presented in Section 3. Section 4 describes an 

agent that implements the policy algorithms and the tool developed to support the 

policy. In section 5 we compare our research with related works. Finally, Section 6 

summarizes our work and points out open issues. 

2   Tolerance Policy 

A policy may be seen as an set of policy rules [24], which is formed by a condition 

and its corresponding actions [24][18]. When the conditions apply, the respective 

actions are performed. The tolerance policy is concerned with the definition of 

conditions for failures to be ignored. An excerpt of the conceptual model for this 

policy is presented on Fig. 1. 

 

 
Fig. 1. Conceptual model excerpt of the Tolerance Policy 

 

A failure may be a high-level failure – such as the non-achievement of a goal – or a 

low-level failure – such as an error reported by a software component. As default, for 

all failures that have a recovery action this action will be performed when the failure 

happens - only those failures explicitly mentioned in some rule of this policy will 

have its failures disregarded, i.e., will not trigger a compensation. Failures may be 

ignored depending on conditions that may be related to the system's context or to the 



 

amount of occurrences of a failure. For each of these types of conditions, there is a 

specific rule type: t.context (ContextCondition) and t.limit (LimitCondition). The 't' in 

these type names stands for 'tolerance'. 

Besides the list of failures that have recovery actions, another input for this policy 

is the context model, or environmental model. The context model specifies the data 

that will be monitored by the system. In self-adaptive systems this data is used to 

identify when an adaptation should be performed and to identify the occurrence of 

failures themselves [7]. In the FAST framework we are considering a context model 

in the form of entities and their attributes [3], expressed in XML. When an attribute is 

an enumeration, this XML also define its possible values. In Fig. 2 we show an 

example of a context model. In this case, there are two context entities: Internet and 

Calendar. The Internet entity has the attribute Speed, which possible values are zero, 

low, average and high. The Weekday of the Calendar may be Sunday, Monday, and 

so on, while the Hour is a number. 

In the following sub-sections it will be described the two tolerance rule types – 

t.context and t.limit. The regular expressions that precisely define the rules syntax are 

presented in Appendix A. 

 

 

Fig. 2. A context model example. This XML excerpt shows two context entities – internet and 

calendar – and their attributes. 

2.1   Tolerance Rule Type t.context 

In order to express in which contexts certain failures may be ignored we use 

t.context rules. This rule type has the following structure: 

1  <?xml version="1.0" encoding="UTF-8"?> 

2  <root>    

3      <ContextEntity name="internet"> 

4          <Attribute name="speed" type="enum"> 

5              <Value>zero</Value> 

6              <Value>low</Value> 

7              <Value>average</Value> 

8              <Value>high</Value> 

9          </Attribute> 

10     </ContextEntity> 

11     <ContextEntity name="calendar"> 

12         <Attribute name="weekday" type="enum"> 

13                 <Value>sunday</Value> 

14                 <Value>monday</Value> 

15                 <Value>tuesday</Value> 

16                 <Value>wednesday</Value> 

17                 <Value>thursday</Value> 

18                 <Value>friday</Value> 

19                 <Value>saturday</Value> 

20         </Attribute> 

21         <Attribute name="hour" type="number"> 

22         </Attribute> 

23     </ContextEntity> 

24 </root> 



 

 

failuresSet isAllowedToFailIf contextExpression 

 

failuresSet is a set of failure identifiers divided by a colon (:), and that has at least 

one failure - i.e., it cannot be an empty set. The allFailures reserved word may be 

used to refer to all the recoverable failures of a system, without the need to name them 

one by one.  

isAllowedToFailIf is a fixed string to identify the rule type. contextExpression is a 

logic expression, with the following structure: 

 

contextEntity.attributeName operator attributeValue 

 

contextEntity is any entity of the system's context model, and attributeName is the 

name of an attribute of that entity. operator is a logic comparator, among the 

following: equals (=), greater than (>), greater equals than (>=), lower than (<), lower 

equals than (<=) and different (<>). AttributeValue is any possible value that entity’s 

attribute may have. During the system execution, this value will be compared with the 

actual value of that attribute, in order to evaluate if this context applies or not. 

A rule of the t.context type has the following meaning: if a failure that is an 

element of the failuresSet occur and the contextExpression currently applies, then that 

failure will be ignored. In other words, no compensation will be performed for that 

failure. 

Usual situations in which a failure can be ignored are those related to date and 

time, as in examples 1 and 2. Example 1 states that if a certain failureX occurs but it is 

before  8 am, this failure will be ignored. The same applies for failureY. In Example 

2, we express that the occurrence of any failure of that system will be ignored on 

Sundays. 

 

Ex.1: failureX: failureY isAllowedToFailIf calendar.hour<=8 

Ex.2: allFailures isAllowedToFailIf calendar.day=Sunday 

2.2   Tolerance Rule Type t.limit 

In this rule type we are not concerned in defining specific conditions in which a 

failure will be ignored. Instead, the concern is to define a maximum number of times 

that some failure will occur without being compensated. This type has the following 

structure: 

 

failuresSet isAllowedToFailAtMost limit 

 

failuresSet is defined as in t.context. The isAllowedToFailAtMost uniquely 

identifies this rule type. limit is a positive integer number that indicates how many 

consecutive occurrences of each failure of the failuresSet will be ignored, before a 

compensation is triggered. 

A rule of this type means that each failure of the failuresSet will have a limit 

number of occurrences ignored. The failure number limit + 1 will be compensated, 



 

and the occurrence counting of that failure will be reset. However, the failures that are 

ignored due to a t.context rule are not included on this counting, as it will be explaind 

in Section 3. 

Note that, when using more than one failure in the failuresSet, we do not define a 

limit of occurrences for a set of failures, but  the limit  for each failure of the 

failuresSet. For instance, in Example 3 the limit of 4 occurrences is not for the two 

failures altogether, it is for each failure separately (failureX and failureY). The rule in 

Example 3 can be split in other two rules (examples 4 and 5), keeping the same 

meaning. 

 

Ex.3: failureX: failureY isAllowedToFailAtMost 4 

Ex.4: failureX isAllowedToFailAtMost 4 

Ex.5: failureY isAllowedToFailAtMost 4 

3   Policy Processing Algorithm 

The goal of the Tolerance Policy processing is to define all failures that will be 

ignored. For that, the procedure described in Fig. 3 is used. The parameters are the 

failure itself - i.e., a failed that actually occurred -, a list of tolerance rules, from the 

policy, and a list of context entities, from which we can get the current attribute 

values of that entities. The result of this procedure is the status of the current failure 

occurrence: ignored or not ignored. 

The first step is to check if there is a rule of the type t.context which failuresSet 

contains that failure (line 1). If there is such a rule, we need to analyze each one of 

these rules (line 2). If the rule is of the type t.context and its context expression 

applies, we will label that element as ignored (lines 3 to 9). The analysis of the 

context expressions is performed by the procedure EvaluateContext. The 

EvaluateContext procedure trivially checks if the rules conditions apply [20]. After 

analyzing all t.context rules for the failure occurrence, if it is not yet marked as 

ignored (line 12), we will check if there is a rule of the type t.limit which failuresSet 

contains that element (line 13). If there is such a rule, we will check if the limit for 

that failure has already been reached (line 14). If the limit has not been reached yet, 

we will increase the occurrence counter of that failure and mark it as ignored (lines 15 

and 16). If the limit has been reached, we cannot ignore that occurrence - i.e, the 

compensation will be required - and we reset the failure counter (line 18) for that 

failure. As a result we return the status of the failure occurrence, indicating if it should 

be ignored or not (line 22). 

In summary, the t.context rules define conditions when the occurrence of a given 

failure may be ignored, and t.limit rules define the maximum number of consecutive 

occurrences of a given failure that can be ignored. However, the amount of 

occurrences defined with a t.limit rule does not take into account the occurrences 

already ignored by the t.context rules. In this sense, we can state that the rule type 

t.context prevails upon the type t.limit. Given a t.context rule, the occurrence of a 

failure in its failuresSet will always be ignored if its context expression is satisfied, in 

despite of how many times this failure had been ignored before.   



 

 

Fig. 3. Algorithm for processing the Tolerance Policy at runtime 

The t.limit rules are concerned only with the failures that were not ignored during 

the evaluation of the t.context rules. Note that the failures ignored due to a t.context 

rule will not change the occurrence counting of a failure. 

Rules can interact. Table 1 for example shows a log of occurrences for the failure 

failureX, considering the two rule types expressed in examples 6 (a t.context rule) and 

7 (a t.limit rule). That table shows the number of each failure occurrence and the 

value of the calendar.day attribute, which is required to assess if any of these rules 

apply. It also indicates if the failure occurrence was ignored as well as the rationale 

for ignoring it – i.e., the rule that made the failure be ignored. 

 

Ex.6: failureX isAllowedToFailIf calendar.day=sunday 

Ex.7: failureX isAllowedToFailAtMost 3 

 

In this example, the failure occurrences for which the rule of the example 6 

applies are failures number 2 and 3. However it is not applicable for occurrences 

number 1, 4, 5, 6 and 7, hence we have to evaluate the rule of the example 7. The 

occurrences 1, 4 and 5 were ignored, since they were below the limit of 3 failure 

occurrences expressed in the rule. The occurrence number 6, being the fourth 

occurrence of that failure that were not ignored by a t.context, shall be compensated, 

and the occurrence counter for that failure shall be reset. Since the occurrences 

counter was reset, the occurrence 7 was also ignored for being below the limit of three 

occurrences. 

Data: f : Failure, TR : ToleranceRule[], CE : ContextEntity[] 

1 if ∃ tr1 ∈ TR tr1.type = tcontext and tr1.failuresSet.contains(f) then 

2  foreach trj in TR do 

3   if trj.failuresSet.contains(f) then 

4    if trj.type = tcontext then 

5     if EvaluateContext(trj.expression, CE) then 

6      f.status ← ignored 

7     end 

8    end 

9   end 

10  end 

11 end 

12 if f.status ≠ ignored then 

13  if ∃ tr2 ∈ TR tr2.type = tlimit and tr2.failuresSet.contains(f) then 

14   if f.failureCounter < tr2.limit then 

15    f.status ← ignored 

16    f.failureCounter ← f.failureCounter + 1 

17   else 

18    f.failureCounter ← 0 

19   end 

20  end 

21 end 

22 return f.status 



 

Table 1.  Occurrence log of the failure failureX  

Occurence 

number 
Calendar.day Ignore failure? Rationale 

1 Saturday Yes Ex. 7 (1st occurrence) 

2 Sunday Yes Ex. 6 

3 Sunday Yes Ex. 6 

4 Monday Yes Ex. 7 (2nd occurrence) 

5 Monday Yes Ex. 7 (3rd occurrence) 

6 Monday No  

7 Tuesday Yes Ex. 7 (1st occurrence) 

4   Application 

In order to use our approach we developed a policy manager component that 

implements the algorithm presented in Section 3. This component is responsible for 

loading the policy rules, presented in Section 2, and the context model. Besides, it 

receives updates on the context and assess if a given failure should be ignored or not, 

upon requests of other components. 

For illustration purpose, on this paper we are presenting the Policy Manager 

component encapsulated as an agent - the FAST Agent. This is a way of showing the 

generic characteristic of this framework. We also envision the usage of the FAST 

implementation as a crosscutting aspect [10], in synergy with works about aspectual 

modeling on multi-agent systems [2][23]. 

The exchange of messages between a system using the FAST framework and the 

FAST Agent itself is depicted in Fig. 4. The first two messages are related to the 

initialization of the FAST Agent, by providing the Uniform Resource Locator (URL) 

of the files that contain the policy and the context model for that system. Then it is 

expected to occur some messages of the third kind, in order to inform an initial state 

of the context. During the rest of the execution of the system, there will be an 

exchange of messages to update the context (message 3) and to check if a failure shall 

be ignored (message 4). Therefore, the agent is not responsible for identifying context 

changes or the occurrence of failures - it receives this information from the system 

itself, or from a monitor system. 

The policy file is a text file in which each line contains a policy rule. The syntax of 

the rules is described in Appendix A as Java regular expressions. The context model 

is a XML file containing the context entities and their attributes. The context model 

defines the data that will be monitored by the system, and that will be informed to the 

FAST agent. This way it will be possible to assess if a given t.context rule applies on 

a specific moment during the execution. 

Besides the FAST Agent, we developed a tool for making it simpler to create the 

policy rules. With this tool we are able to prevent syntax errors that could otherwise 

occur. Fig. 5 shows an example of the creation of a t.context rule. The user selects 

failures, from the list of failures that have recovery actions, and then defines in which 

context that failure can occur without compensation. In this example, the failures are 

regarding the updating of data on a movie system.  

 



 

 

Fig. 4. Communication between a system and the FAST Agent 

In order to prevent the user from deciding to ignore a critical failure, the list of 

possible failures informed for this tool may be a partial model. Therefore, the reserved 

word allFailures will not include the omitted failures. 

The rule defined in the example of Fig. 5 is downloadPictures isAllowedToFailIf 

calendar.weekday=saturday. This policy editor tool makes it easier for the user to 

create and maintain the rules of a policy. 

We performed a simulation of the execution of this system, considering two 

variables: the amount of failures occurrence (low, medium and high occurrence) and 

the context on which the failures occur. All simulations were performed considering 

one t.context rule and one t.limit rule. The average result was a decrease of 

approximately 41% on the number of required compensations, preventing the 

computational resources waste of performing these unnecessary compensations. This 

gives a general idea of the suitability of this approach. However, these results cannot 

be generalized to every system. Hence, an analysis of the adoption of this framework 

needs to be performed system-by-system. 

5   Related Work 

There is a series of languages for policy definition in the communication networks 

domain. The CIM-SPL language [1] is a standard proposed by the Distributed 

Management Task Force to specify network policies. Rei [13] is a policy definition 

language based on deontic logic, on the same domain. Other languages include 

Ponder [9], ACPL [22] and PDL [16]. These policies, besides targeting specific 

domains, are far more computationally costly and complex than it was required for 

the framework, motivating the creation of a language of our own.  



 

 

 

Fig. 5. Wizard for creating a t.context rule 

A more strongly related kind of policies are the policies for deteriorating systems. 

They basically define conditions on which a software component should be repaired, 

based on their age, failure rate [16] and their technological obsolescence [17]. Our 

tolerance policy complements these policies, in the sense that we deal with another 

aspect of failures. 

Another way of providing the flexibility to the user would be by including the 

failure handling in an options or a settings menu. This approach is potentially more 

user-friendly, however it lacks in generalization, since not every system has a 

graphical interface and, in those that have one, the user interfaces are usually 

specifically designed for each system. Moreover, the inclusion of a new category of 

options in the already overloaded options menu [15] could harm the usability of the 

software as a whole. 

6   Conclusion and Future Work 

In this paper we present a generic version of the FAST framework, which provides 

system users and administrators with the capability of defining conditions on which a 

failure may be ignored. The contribution of this framework is twofold: 



 

a) It enhances the failure handling on software systems by including a degree of 

flexibility. This way the impact of a failure is not defined only by software engineers, 

but also by users or system administrators; 

b) It reduces the resources wasted when compensating failures, by reducing the 

amount of failures that require compensation. 

In this paper the policy itself was described, with its two rule types, as well as the 

algorithm used to assess the rules at runtime. Using a policy is far different from 

expressing these conditions directly on the requirements model, in the sense that the 

model is designed by software engineers, whereas the policy is possibly designed by 

the user. 

The feasibility of the algorithm was shown by coding it as the behavior of a 

software agent. A Policy Editor tool was also developed, making it easier for the user 

to create and maintain the rules of a policy. Despite initial experiments showing an 

overall suitability, further experiments on real-world software system need to be 

performed, to analyze the usefulness and the effectiveness of our approach.  

We also plan to increase the expressiveness of the policy rules, allowing the usage 

of logic operators like AND, OR and XOR to create more complex conditions. 

Furthermore, we want to be able to handle more complex rules, which can mix 

different types of a rule.  Lastly, we intend to incorporate a priority policy, to define 

the priorities for the compensation of each failure. 

Acknowledgements 

We are thankful to Fabiano Dalpiaz, Paolo Giorgini and John Mylopoulos, for 

inspiring this work and for their continuous feedback. This work was partially 

supported by FACEPE, CNPQ, CAPES, UPV PAID-02-10, Erasmus Mundus 

External Cooperation Window - Lot 15 Brasil and the Spanish research project 

TIN2007-64753. 

References  

1. Agrawal, D.; Calo, S.; Lee, K.; Lobo, J. Issues in Designing a Policy Language for 

Distributed Management of IT Infrastructures. In: Integrated Network Management, 2007. 

IM'07. 10th IFIP/IEEE International Symposium on. [S.l.: s.n.], 2007. p. 30-39. 

2. Alencar, F.; Castro, J.; Moreira, A.; Araujo, J.; Silva, C.; Ramos, R.; Mylopoulos, J. 

Integration of Aspects with i* Models. In: Agent-Oriented Information Systems IV, LNCS 

4898, Springer-Verlag, 2008, pp. 183-201. 

3. Ali, R.; Dalpiaz, F.; Giorgini, P. A goal modeling framework for self-contextualizable 

software. In: Lecture Notes in Business Information Processing, v. 29. p. 326- 338, . 

Berlin Heidelberg: Springer, 2009. 

4. Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of 

dependable and secure computing. IEEE Transactions on Dependable and Secure 

Computing, IEEE Computer Society, Los Alamitos, CA, USA, v. 1, p. 11-33, 2004. ISSN 

1545-5971. 



 

5. Cheng, Betty H.C., de Lemos, Rogério, Giese, Holger, Inverardi, Paola, and Magee, Jeff. 

Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, v. 

5525. Berlin Heidelberg: Springer, 2009. 

6. Clavareau, J.; Labeau, P. Maintenance and replacement policies under technological 

obsolescence. Reliability Engineering and System Safety, Elsevier, v. 94, n. 2, p. 370-381, 

2009. 

7. Dalpiaz, F.; Giorgini, P.; Mylopoulos, J. An architecture for requirements-driven self-

reconfiguration. In:  ECK, P. van; GORDIJN, J.; WIERINGA, R. (Ed.). CAiSE 2009.  

Lecture Notes in Computer Science, v. 5565, p. 246-260. ISBN 978-3-642-02143-5. 

8. Damianou, N. Dulay, N.; Lupu, E.; Sloman, M.; Tonouchi, T. Tools for domain-based 

policy management of distributed systems. In: Proceedings of the IEEE/IFIP Network 

Operations and Management Symposium (NOMS 2002), pages 203–217, 2002. 

9. Damianou, N.; Dulay, N.; Lupu, E.; Sloman, M. The ponder policy specification language. 

In: LECTURE NOTES IN COMPUTER SCIENCE. [S.l.]: Springer-Verlag, 2001. p. 18-

38. 

10. E. Figueiredo, C. Sant'Anna, A. Garcia, and C. Lucena. Applying and Evaluating 

Concern-Sensitive Design Heuristics.  XXIII Brazilian Symposium on Software 

Engineering, 2009, pp. 83-93. 

11. Hiltunen, M. A.; Immanuel, V.; Schlichting, R. D. Supporting customized failure models 

for distributed software. Distributed Systems Engineering, v. 6, 1999. 

12. Horn, P. Autonomic computing:  IBM's Perspective on the State of Information 

Technology.  IBM, 2001. 

13. Kagal, L.; Finin, T.; Joshi, A. A policy language for a pervasive computing environment. 

In: POLICY '03: Proceedings of the 4th IEEE International Workshop on Policies for 

Distributed Systems and Networks. Washington, DC, USA: IEEE Computer Society, 

2003. p. 63. ISBN 0-7695-1933-4. 

14. Kephart, J. O.; Chess, D. M. The vision of autonomic computing. Computer, IEEE 

Computer Society Press, Los Alamitos, CA, USA, v. 36, n. 1, p. 41-50, 2003. ISSN 0018-

9162. 

15. Liaskos, S.; Lapouchnian, A.; Wang, Y.; Yu, Y.; Easterbrook, S. M. Configuring Common 

Personal Software: a Requirements-Driven Approach. In Proceedings of the 13th IEEE 

International Conference on Requirements Engineering (RE), 2005. 

16. Lobo, J.; Bhatia, R.; Naqvi, S. A policy description language. In: AAAI '99/IAAI'99: 

Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh 

Innovative applications of artificial intelligence conference. Menlo Park, CA, USA: 

American Association for Artificial Intelligence, 1999. p. 291-298. ISBN 0-262-51106-1. 

17. Müller, H. A.; O'Brien, L.; Klein, M.; Wood, B. Autonomic Computing. CMU/SEI-2006-

TN-006. [S.l.], 2006. 

18. Ouda, A.; Lutfiyya, H.; Bauer, M. Towards self-configuring policy-based management 

systems. In:  POLICY '08:  Proceedings of the 2008 IEEE Workshop on Policies for 

Distributed Systems and Networks. Washington, DC, USA: IEEE Computer Society, 

2008. p. 215-218. ISBN 978-0-7695-3133-5. 

19. Pimentel, J.; Santos, E.; Castro, J. Conditions for ignoring failures based on a requirements 

model. In: Proceedings of the 22nd International Conference on Software Engineering and 

Knowledge Engineering (SEKE). p. 48-53, 2010. 

20. Pimentel, J. High Level Failure Treatment for Self-Configuring Systems: The FAST 

Approach (In Portuguese: Tratamento de Falhas de Alto-Nível para Sistemas Auto-

Configuráveis: A abordagem FAST). MSc Dissertation. Federal University of 

Pernambuco, 2010. 

21. Rinner, B. Detecting and Diagnosing Faults. In Telematik, 8(2), p. 6-8, 2002. 



 

22. Scarlett, K. Solutions in action: Creating policy for action-based decisions in PMAC. 

Agosto 2006. Web-site. Last Access: 28th of November, 2010. Available on: 

http://www.ibm.com/developerworks/library/ac-naction1.html 

23. Silva, C.; Lucena, M.; Castro, J.; Araujo, J.; Moreira, A.; Alencar, F. Support for aspectual 

modeling to Multiagent system architecture. In: ICSE Workshop on Aspect-Oriented 

Requirements Engineering and Architecture Design, 2009 (EA´09), 2009, Vancouver. 

Procedings of ICSE Workshop on Aspect-Oriented Requirements Engineering and 

Architecture Design, 2009 (EA´09), 2009. p. 38-43. 

24. Stone, G.; Lundy, B.; Xie, G. Network policy languages: A survey and a new approach. 

Technical report, Defense Technical Information Center OAI-PMH Repository, 2003. 

25. Strassner, J.; Samudrala, S.; Cox, G.; Liu, Y.; Jiang, M.; Zhang, J.; Meer, S.; Foghl´u, M.; 

Donnelly, W. The design of a new context-aware policy model for autonomic networking. 

In ICAC ’08: Proceedings of the 2008 International Conference on Autonomic 

Computing, pages 119–128, Washington, DC, USA, 2008. IEEE Computer Society. 

26. Wang, H. A survey of maintenance policies of deteriorating systems. European Journal of 

Operational Research, v. 139, p. 469-489(21), 2002. 

Appendix A: Regular expressions 

This Appendix presents the Java regular expressions used to define the syntax of 
the policy rules. 

BASIC EXPRESSIONS: 

Failure identifier: [a-z][a-zA-Z]* 

Failures set: [a-z][a-zA-Z]*(:[a-z][a-zA-Z]*)* 

Positive integer: [0-9]*[1-9][0-9]* 

Undefined amount of whitespaces: \\s+ 

Context expression (structure): ContextEntity.AttributeName operator  
                                                  AttributeValue 

Context expression (regular expression): [a-zA-Z]+\\.[a-zA-Z]+  
                           (=|>|>=|<|<=|<>)[a-zA-Z0-9]+ 

RULE TYPES: 

T.context (structure): failuresSet isAllowedToFailIf contextExpression 

T.context (regular expression): ^[a-z][a-zA-Z]*(:[a-z][a-zA-Z]*)*  
          \\s+isAllowedToFailIf\\s+[a-zA-Z]+  

          \\.[a-zA-Z]+(=|>|>=|<|<=|<>)[a-zA-Z0-9]+$ 

T.limit (structure): failuresSet isAllowedToFailAtMost limit 

T.limit (regular expression): ^[a-z][a-zA-Z]*(:[a-z][a-zA-Z]*)*  
        \\s+isAllowedToFailAtMost\\s+[0-9]*[1-9][0-9]*$ 


