
Limiting the Scope of the Domain Language

to Describe the Application Language

Leandro Antonelli
1
, Gustavo Rossi

1
, Julio Cesar Leite

2
, and Alejandro Oliveros

3

1Lifia, Fac. de Informática, UNLP, Bs As, Argentina

{lanto,gustavo}@lifia.info.unlp.edu.ar
2Dep. Informática, PUC-Rio, Gávea, RJ, Brasil

julio@inf.puc-rio.br
3INTEC, UADE, Bs As, Argentina

oliveros@gmail.com

Abstract. Agile methodologies arise as a way to cope with problems of estima-

tion and planning that occur in traditional software development. Nevertheless,

the transition to agile could be hard. The key challenge reported by literature re-

fers to requirements, in particular with the identification and description of User

Stories. It is stated that User Stories are often described vaguely by the wrong

people at the wrong time. To cope with this problem, there is an already pro-

posed strategy which consists in deriving User Stories from the domain lan-

guage captured through the Language Extended Lexicon (LEL). This strategy

produces an initial set of User Stories with small effort. Since the LEL aims to

capture the language of the domain while the User Stories must be limited to a

specific application we believe that it is necessary to adjust the LEL. In this pa-

per, we propose a strategy to limit an LEL that describes the language of a do-

main to describe the vocabulary of a specific application. Consequently, User

Stories derived from the limited LEL using the already proposed approach will

only describe the functionality of the application. Based on a preliminary evalu-

ation, we state that teams with no experience in writing User Stories obtain bet-

ter products. Although the results are preliminaries, we think that they are

promising.

Keywords: Agile Development·Language Extended Lexicon·User Stories.

1 Introduction

The development of software systems is a complex activity. Many actors with dif-

ferent concerns are involved, and they build several software products which are in-

terrelated. Besides, the nature of software also makes its development a complex task.

Brooks [7] identifies four characteristics that make software a different kind of arti-

fact altogether, contributing to the complexity of its construction: invisibility, modifi-

ability, conformity, and complexity. These characteristics are some of the reasons

why there are so many budget overruns in software projects, as well as failure to de-

liver what was expected [29].

mailto:julio@inf.puc-rio.br
mailto:oliveros@gmail.com

Agile methodologies (like Scrum) rely on incremental and iterative development

to cope with these problems. Moreover, agile methodologies also rely on a close

communication between clients and development teams to provide a valuable and

immediate feedback during software development. Nevertheless, it is difficult to be

agile. Development teams suffer the transition to agility and enjoy at first the freedom

that agile development provides, and later, they find out that challenges arise, some of

them related to requirements.

User Stories play a critical role in this transition. They are often written by the

wrong people at the wrong time [13]. Therefore, their descriptions take significant

effort and are finally imprecise [28]. Furthermore, after the functionality described by

the User Stories is coded, there is little information above the trace between the User

Stories and the related code that implement the functionality [6].

The Language Extended Lexicon (LEL) is a technique for specifying domain

(context) language [20]. LEL is a very convenient tool for experts with no technical

skills, although people with such skills will profit more from its use [26]. LEL effec-

tively captures and models the domain language because it conforms to the mecha-

nism used by the human brain to organize expert knowledge [32]. In particular, the

convenience of LEL as a tool arises from three significant characteristics: it is easy to

learn [10], easy to use [12] and it has good expressiveness [17].

Antonelli et al. [1] propose a strategy to derive User Stories from LEL. The User

Stories obtained with the strategy are preliminaries and must be analyzed and en-

riched. Nevertheless, they are obtained automatically from the LEL. Thus, the strate-

gy is a good contribution to teams that are initiating in agile because the User Stories

has proven to be useful. Nevertheless, it is needed an improvement because the LEL

captures the language of a domain, while User Stories must describe the functionality

of an application. Consequently, the scope of the application to describe with User

Stories must be defined.

In this paper, we propose a strategy to limit an LEL that describe a domain lan-

guage to capture only an application language. Then, User Stories derived from the

LEL with the already proposed strategy will only describe the functionality of the

application. It is important to emphasize that the strategy proposed does not change in

any way the derivation process proposed by Antonelli et al. [1]. The strategy proposed

consists in adjusting the LEL that the derivation process will use as input. The rest of

the paper is organized as follows: Section 2 presents some background necessary to

understand the strategy. Section 3 describes the strategy. Section 4 shows a prelimi-

nary evaluation of such strategy. Section 5 discusses some related works. Finally,

Section 6 presents some conclusions and future works.

2 Background

This section describes some basic concepts about User Stories, the Language Ex-

tended Lexicon, and the derivation of User Stories from LEL.

2.1 User Stories

A User Story is a description in natural language that captures what the user wants

to achieve. User Stories generally adjust to a template which considers three attrib-

utes: a role, a goal/desire, and reason [9]. The role defines the user who interacts with

the application. The goal/desire represents the requirement that the application must

fulfil for the role. Both these attributes refer to elements within the scope of the appli-

cation. In contrast, the reason belongs to the context of the application and states why

the user requires that the application provides the functionality described in

goal/desire (Figure 1).

Fig. 1. User Story template.

To illustrate the approach, it is used a real example involving the management of

vacation periods for the employees of a company. The employees have a certain

number of vacation days per year. This number depends on how many years the em-

ployee has been working for the company. When the employee requests a vacation

period, the request needs two authorizations to become effective. First, the Human

Resources Department must verify that the employee is not requesting more days than

those he is allowed to take. After that, the employee’s manager must analyse the pro-

ject schedule to determine whether or not the employee’s presence is essential at work

in the vacation period he has requested. A schedule planner is in charge of building

the project schedule. He defines the tasks and assigns employees to those tasks in a

period of time. Figure 2 shows an example of a User Story.

Fig. 2. User Story example.

2.2 Language Extended Lexicon (LEL)

LEL is a glossary whose goal is to register the definition of terms that belong to a

domain. It is tied to a simple idea: “understand the language of a problem without

worrying about the problem” [20]. Terms (called symbols within LEL) are defined

through two attributes: notion and behavioral responses. Notion describes the denota-

tion, i.e. the intrinsic and substantial characteristics of the symbol, while behavioral

responses describe symbol connotation, i.e. the relationship between the term being

described and other terms.

Each symbol of the LEL belongs to one of four categories: subject, object, verb or

state. This categorization guides and assists the requirements engineer during the

description of the attributes. Table 1 shows each category with its characteristics and

how to describe them.

Some symbols identified for the domain of the example are summarized in Table

2. They are organized according to their category. Some examples of LEL symbols

description are: employee (Figure 4), request vacation period (Figure 5), build sched-

As a <role>,

I want <goal/desire>,

so that <reason>.

As an employee,

I want to request vacation period,

So that I take some days off work.

ule (Figure 6) and analyze request (Figure 7). Underlined words identify other sym-

bols which are defined in the LEL of the example.

Table 1. LEL categories.

Category Characteristics Notion Behavioral responses

Subject
Active elements which perform

actions

Characteristics or condi-

tion that subject satisfies
Actions that subject performs

Object
Passive elements on which

subjects perform actions

Characteristics or attrib-

utes that object has
Actions that are performed on object

Verb
Actions that subjects perform on

objects
Goal that verb pursues Steps needed to complete the action

State
Situations in which subjects and

objects can be found
Situation represented

Actions that must be performed to

change into another state

Table 2. LEL symbols of vacation application domain.

Category Symbols

Subject
Employee, Human Resources Department, Manager,

Schedule planner

Object Vacation Request, Project schedule, Vacation Period, Task, Resoure, Software

Verb

Define vacation period, Request vacation period, Verify vacation request, Analyze

vacation request, Check vacation request, Build project schedule, Authorize vacation

request, Define tasks, Define resources, Assign people, Organize tasks, resources and

people, Design software, Code software, Test software

State
Vacation request created, Vacation request analysed, Vacation request approved, Vacation

request accepted, Software analyzed, Software designed, Software coded, Software tested

Fig. 3. Employee symbol description.

Fig. 4. Request vacation period symbol description.

Subject: Employee

Notion

Person who works for the company and has some skills in software

development.

Behavioral responses
Employee defines vacation period
Employee requests vacation period
Employee designs software
Employee codes software
Employee tests software

Verb: Request vacation period

Notion

Act of asking for permission to take some days off work

Behavioral responses

The employee defines the vacation period

Human Resources Department verifies vacation request

Manager analyzes vacation request

Human Resources Department authorizes vacation request

2.3 Obtention of User Stories from an LEL

The LEL has useful knowledge that makes it possible to obtain User Stories from

it [1]. User Stories are described through three attributes: a role (“As a <role>”), a

goal / desire (“I want <goal/desire>”) and reason (“so that <reason>”). The first at-

tribute to be considered in the process of obtain User Stories from the LEL is the goal

/ desire. It is related to a verb since verbs are actions performed in the scope of an

application. Then, a role is necessary to perform the action. Subjects are naturally

related to verbs because the behavioral responses of subjects describe the actions that

the subjects perform. Thus, the role is the subject who performs the action stated by

the verb. Finally, the reason for the goal / desire can be found in the notion of the

verb symbol. Figure 7 shows ATL transformation [4] to obtain User Stories from

LEL.

Fig. 5. Build schedule symbol description.

Fig. 6. Analyze vacation request symbol description.

According to the example, if it is considered the symbols employee (Figure 3) and

request vacation period (Figure 4), the User Story obtained through the transfor-

mation is described in Figure 8.

Fig. 7. ATL transformation for derivation of User Stories from LEL.

Fig. 8. User Story derived from employee and request vacation period symbols.

Verb: analyze vacation request

Notion

Act of analyzing the project schedule needs for the period requested

Behavioral responses

Manager checks vacation request with project schedule

Manager authorizes vacation request

Verb: Build project schedule

Notion

Act of organizing people, resources and tasks in a timeline

Behavioral responses

Schedule planner defines tasks

Schedule planner defines resources

Schedule planner assigns people

Schedule planner organizes tasks, resources and people in a timeline

rule LEL2UserStory {

from s : Symbol (s.isVerb())

to u : UserStory (

u.role <- s.referencedInBehaviouralResponsesFrom() ->

select (x| x.isSubject()) -> first()

u.goal/desire <- s.name

u.reason <- s.notion }

As an employee,

I want to request vacation period

So that I take some days off work

Oliveira et al. [27] refer the definition of a goal as a condition that an actor would

like to achieve. They find useful the usage of states to identify goals. And the states

are modified and influences by actions. These goals make it possible to obtain func-

tional requirements as well as non-functional requirements. In this paper, we are go-

ing to deal only with functional requirements.

3 Our Approach

Our proposed approach has the goal of defining the scope of the application in an

LEL that captures the language of a domain. The definition of the scope is performed

reducing an LEL that captures the language of the domain to a smaller LEL that cap-

tures only the language exclusively used in the application. Therefore, this LEL that

only describe the application can be used with the derivation strategy described in the

Background section to derive User Stories.

Our approach is a process that requires an LEL as input and produces a new LEL

as output. The input LEL must capture the language of the domain for which an ap-

plication will be developed. The output LEL will describe the vocabulary used within

the scope of the application (and not the whole domain). Both LELs, the domain and

the application LELs, has the same structure [20]. The difference is that the domain

LEL pursues the traditional aim of capturing the language of the domain and must be

constructed in a regular way. While the application LEL is a subset of the domain

LEL and only includes elements that are within the boundaries of the application.

Our approach consists of two steps. The first step refers to identify the scope of

the application, while the second step refers to reduce the LEL to include only ele-

ments that will be located within the boundaries of the application. To identify the

scope of the application, the behavioral responses of the symbols must be analyzed

and must be selected the behavioral responses that represent functionality that must be

included in the application. Then, to reduce the LEL to elements included in the

boundaries of the application, all the symbols must be analyzed and the ones which

are used in the behavioral responses must be selected (Figure 9).

The following sections describe each step.

Fig. 9. Our approach in a nutshell.

3.1 Define application scope

IEEE standard 830-1998 states that requirements must describe clearly what the

software system must do [15]. They recommend using the expression “the system

shall…” because it states clearly the functionality and the obligatory condition that

the software system must implement. Kovitz [18] propose the template “<role> must

<action>” to define requirements. This template refines the IEEE template because it

defines clearly the role that will perform the action. Behavioral responses of the LEL

Domain

LEL

Application

LEL
Define application

scope

Set LEL

boundaries

symbols are recommended to be described using the template “<subject> + <verb> +

<object>” [2]. This template is similar to template proposed by Kovitz, because the

subject is related to the role, and the verb is related to the action. Then, the descrip-

tion of the behavioral responses is more precise than Kovitz template, because LEL

description also considers the object that receives the action.

Since behavioral responses are similar to requirements and more precise, to define

the scope of the application, the behavioral responses of the symbols must be ana-

lyzed, and it must be selected the behavioral responses that refer to functionality that

will be included in the application.

Let’s consider that the scope of the system includes only functionality to manage

the vacation request and authorization workflow. And the project schedule and its

management are outside of the boundaries. The symbol request vacation period (Fig-

ure 4) include behavioral responses that are inside the boundaries of the application.

The symbol build schedule (Figure 5) does not include any behavioral response inside

the boundaries of the application, because all of them are related to the construction of

the project schedule. Then, the symbol analyze vacation request (Figure 6) has one

behavioral response inside the boundaries of the application (“Manager authorizes

vacation request”), while the other behavioral response (“Manager checks vacation

request with project schedule”) is outside the boundaries of the application.

3.2 Set LEL boundaries

Good practices in constructing the LEL recommend to describe behavioral re-

sponses using the template “<subject> + <verb> + <object>” [2]. In particular, behav-

ioral responses of subject symbols must describe the action that the subject performs

and behavioral responses of object symbols must describe the action that the object

receives. That is, the behavioral responses of some symbol S must begin with S (S +

<verb> + <object>). And the behavioral responses of some symbol O must end with

O (<subject> + <verb> + O). In consequence, there is a reflexive reference in behav-

ioral responses of subjects and objects. Behavioral responses of verbs symbols are

different because they describe a set of steps to perform the verb which is described.

Hence, to describe a verb V, the behavioral responses do not have to use the same

verb V to avoid a cyclic definition.

The subject employee (Figure 3) has some behavioral responses related to the

workflow for requesting vacation and others related to developing software. All of

them begin with the symbol employee. The verb request vacation period (Figure 4) is

performed by three steps that are enumerated in the behavioral responses, and none of

them use the verb request vacation period.

The first step of our proposed approach (described in section 3.1) defines the

scope of the application by selecting the behavioral responses that refer to actions that

occur inside the boundaries of the application. Thus, if the action V1 is inside the

boundaries of the application, some behavioral response BR1 with a description

S1+V1+O1 must be selected. That means that a subject S1 performs the action and the

object O1 receives the action. Then, both S1 and O1 will include BR1 within their de-

scriptions of behavioral responses. Moreover, the LEL must include one verb V2,

which also include BR1 within their descriptions. The four symbols: V1, S1, O1, and

V2 should be considered as symbols of the application LEL. The symbol V1 is explic-

itly identified as an action inside de boundaries of the application. The symbols S1 and

O1 give more information about the action. And one of the steps to perform the sym-

bol V2 is the action V1that it is inside the boundaries of the application. Therefore, V2

is also inside the boundaries (At least, partially).

There are two rules to set the LEL boundaries. The first rule determines to consid-

er the symbols that are explicitly mentioned in every behavioral response that is se-

lected. The second rule determines to consider the symbols which include a behavior-

al response that was chosen be to be inside the application boundaries. For subject and

object symbols both rules are redundant because if a subject and object is referenced

in a behavioral response, the subject or object must include the behavioral response in

their description. In verbs symbols, both rules are complementary, because verbs

descriptions of behavioral response do not include the verb which is defined in their

behavioral responses.

For example, let’s consider that the behavioral response “The employee requests

vacation period” is chosen to be inside de application scope in step 1. This expression

is included in subject employee (Figure 3). Although the symbol vacation period is

not shown in this paper, the behavioral of this symbol also includes the expression.

Thus, according to the first rule, both symbols employee and vacation period must be

included in the application LEL. Then, the verb request vacation period must also be

included according to the same first rule. In this example, the verb request vacation

period is a high-level action, and no action contains it. But there could exist a symbol

go on holiday that would include “the employee requests vacation period” and it that

case, the symbol go on holiday should be included to build the application LEL.

Let’s consider another behavioral response “Schedule planner builds schedule.”

This behavioral response was not chosen to be in the application scope. That means

that the subject schedule planner must not be chosen, neither schedule (considering

that no other behavioral response justify the selection of these symbols). The verb

build schedule neither has to be considered nor another verb that could have included

this behavioral response.

Let’s consider a mix situation. For example, the behavioral response “manager

authorizes vacation request” makes the subject manager, the object vacation request,

and the verbs authorize and analyze should be included in the application LEL. At

this point, it is important to mention that the description of the behavioral responses

must be adjusted according to the behavioral responses which were chosen in the first

step of the approach. In the case of the symbol analyze vacation request must include

only the behavioral response “manager authorizes vacation request,” because the

behavioral response “manager checks request with project schedule” was not chosen.

4 Preliminary Evaluation

A preliminary quasi-experiment was performed to assess the strategy proposed.

The aim of limiting the scope of the LEL is to improve the User Stories obtained from

it through the derivation process proposed by Antonelli et al. [1]. The experiment

consisted in comparing the User Stories constructed with two different techniques.

One technique consisted in limiting the scope of a domain LEL to obtain an applica-

tion LEL and obtain User Stories from the application LEL. The other technique con-

sisted in writing the User Stories in a traditional way, that is, from the knowledge that

product owner elicited from stakeholders without using any kind of LEL.

The analysis was performed in two ways. We consider the production process (be-

cause it is related to the definition of the scope of the language and the derivation of

User Stories). And we also consider the consumption of the User Stories, because it is

a way assessing the quality of the User Stories produced. Thus, the goal of the quasi-

experiment is described according to the Goal/Question/Metric (GQM) method for-

mulated by Basili et al. [5]:

Analyze the traditional approach and our approach for producing User Stories

for the purpose of comparing the writing and reading processes

with respect to time and easiness

To do that, we measured four variables: the time needed to write User Stories, eas-

iness to write, the time required to understand the User Stories and understandability.

The variables can be grouped in: one pair of variables to assess the writing process

and the other to evaluate the reading process. Each pair of variables has an objective

measure in minutes (time) and a subjective measure, the perception of the subject

about how easy it is to write and how understandable the User Stories are. These sub-

jective variables were measured in a range of 5 values: very easy, easy, medium, hard

and very hard. Participants were asked to complete a questionnaire ranking each User

Story after writing or reading it.

We decided to design a quasi-experiment with two different teams that had never

used agile methodologies before. In particular, we took benefit from the transfor-

mation of the development process to agile (Scrum) as an opportunity to run this ex-

periment. The teams were working in different modules of the same software system.

And they have never used User Stories. The system was of business intelligence ap-

plication. It analyzes the performance of different lawyers in the prosecution of citi-

zens who have debts of taxes. After the analysis, the application recommends reward-

ing or penalizing the lawyers regarding their performance.

Each team had a product owner (who had used LEL technique before) responsible

for writing User Stories and for providing the information about the time and easiness

to write User Stories. Then, during the planning session, the whole team had to read

and analyze the User Stories, so they provided information about time and level of

understandability. The experiment lasted four sprints. Both teams used the two ap-

proaches alternately. One team used our proposed approach first while the other start-

ed with the traditional approach of writing User Stories.

The participants of the experiment were eight practitioners divided into two teams

of four people. The development team was composed of members with a degree in

Computer Science and experience in the software development industry for more than

ten years. Product owners were requirements engineers who also had a degree in

Computer Science and experience in the software development industry for more than

15 years.

The participants (developers and product owners) received training in User Stories

and Scrum in general as part of the migration of the development process in which

they were involved. The training consisted of weekly workshops during two months

where different topics of agile development were taught and practiced: (i) introduc-

tion to agile, (ii) Scrum roles, (iii) Scrum ceremonies, (iv) management of the product

backlog, (v) estimation of User Stories, (vi) prioritization of User Stories and (vii)

sprint execution and overcoming impediments. Additionally, we provided training in

the application of our proposed approach, that is, how to limit the domain LEL to

obtain an application LEL. And we also provided training in the approach to derive

User Stories from LEL.

The experiment was carried out during four sprints of fifteen days each, where

both product owners received information about the functionality they had to specify.

There were different types of User Stories. Some User Stories define strategies to

analyze the performance of the lawyer with different criteria. Other User Stories rec-

ommend actions to reward or penalize lawyers considering their performance. Also,

there were a third group of User Stories to configure the process of analysing and

recommend, and to show the results of such processes. Then, they wrote the User

Stories and provided us with the information about the time they had needed for spec-

ifying and their perception about its easiness. Products owner alternatively used the

two different techniques to write User Stories. They wrote User Stories directly from

the knowledge they had received. And they used an already prepared LEL that cap-

tured the domain language. They applied our proposed approach to limit the domain

LEL to an application LEL. And after that, they applied the technique to derive User

Stories from the application LEL.

In the planning session, the product owners presented the User Stories to their

teams. The teams analyzed them and provided us with the information about the time

they had needed to understand them and about how understandable they were. We

collected information about 48 User Stories: 24 were specified using the traditional

approach, and 24 were specified using our approach. Every team worked with a dif-

ferent set of functionality, so, they had to write and read different User Stories.

Although we were not able to perform a quantitative analysis due to only two

people were writing User Stories, the case analysis provided us with some preliminary

results about the advantages of the proposed approach. The experiment showed that

our approach has benefit in the writing process. The time required to apply our ap-

proach was lower that the time needed to apply the conventional approach (averages

time were 12 and 18 minutes). Moreover, the complexity perceived in applying our

approach was very small in comparison with the conventional approach. There is a

significant intellectual effort in understanding a new domain, defining the scope of the

application and writing User Stories. Thus, our approach relies on an already prepared

LEL that describes the domain. The intellectual effort of applying our approach to

reducing the domain LEL to an application LEL is low. There is no creativity process

involved since our approach relies on reviewing symbols and deciding whether they

belong or not to the application limits. Then, obtaining User Stores through the deri-

vation strategy proposed by Antonelli et al. [1] is also straightforward. The results

revealed that there were no differences in the reading processes. Since time and un-

derstandability were similar in both approaches, we can argue that the quality of the

User Stories produced with both approaches was similar. Considering that our ap-

proach has advantages about the writing process, and the quality of the products are

similar in our approach and the conventional approach, we can claim that our ap-

proach has benefits over the conventional approach.

Feldt et al.[11] state the importance of analyzing threats to the validity of the study

and the results. Wohlin et al. [31] group validity threats into four categories: conclu-

sion, internal, construct and external validity. The following paragraphs analyze dif-

ferent threats from each category.

Concerning the conclusion category, one possible threat is random heterogeneity

of subjects. The participants were heterogeneous as regards years of experience in the

industry, but there is homogeneity regarding overall experience since no one had had

experience in the application of both techniques.

The second category of threats to analyze is internal validity. Selection is the main

threat to internal validity. To tackle the effect of natural variation in human perfor-

mance, we selected people with no experience in both strategies to be applied. Then,

we carried out a paired design where all the subjects had to apply both treatments.

According to the construct validity category, we observed that the experiment did

not suffer from such threats referred to as hypothesis guessing, evaluation apprehen-

sion or experimenter expectancies. The subjects were not familiar with the approach-

es, nor they knew the approach to be tested, so they could not force specific results.

5 Related Work

Maiden [24] states that writing requirements is a complex cognitive task that

needs a diverse range of interleaved cognitive processes. He states that we need more

empirical studies of requirements work. Then, Savolainen et al. [28] report a transi-

tion to agile development and they state that they have problems using User Stories

because they fail to obtain User Stories with the necessary expressiveness. Our work

was inspired by both works. We faced the same problem as Savolainen et al. And the

strategy proposed has the aim of reducing the cognitive effort, because the huge effort

is performed while creating the LEL. After that, our proposed approach is quite

straightforward to produce the application LEL and User Stories.

Maiden et al. [23] state that writing requirements, in particular, agile requirements,

demands a level of creativity that is not easy to reach by requirements engineering. In

this context, integrating software product line engineering can be beneficial, as Mo-

han et al. reported in their work [25]. Our work is based on both ideas. Conforming to

the philosophy of the product line engineering, our approach is focused on the use of

two types of LEL: a domain LEL and an application LEL. The domain LEL is similar

to the base of knowledge that software product lines use to build a family of products.

Lan Cao et al. [8] perform an empirical study of the agile requirements engineering

practices regarding their importance and the cost/benefit of their application. They

discover that iterative requirements engineering is one the most important and valua-

ble practice; nevertheless, it is costly to implement. Issa et al. [16] developed a cata-

log to reduce the effort to specify requirements. They showed that the catalog they

proposed satisfies the attribute of completeness required by requirements. Our strate-

gy can be considered an iterative requirements engineering practice since the same

domain LEL is used sprint by sprint to produce different application LEL. Moreover,

we can also consider that the domain LEL is a kind of catalog.

Leite et al. [21] propose a scenario construction process, where the scenarios are

obtained from the LEL. The LEL describes the vocabulary while the scenarios de-

scribe the application. One important thing is that LEL evolves as the scenario build-

ing process progress. Our strategy is quite similar to this strategy. Both strategies

begin with the LEL, although we make a distinction between two types of LEL. After

that, the User Stories produced in our approach from the application LEL are simpler

that the Scenarios of Leite. Finally, it is important the consideration of the evolution

of the LEL. We think that this is an important issue to consider in our approach.

Breitman et al. [6] propose a framework for managing User Stories, in particular, they

propose a way of organizing User Stories and keeping track to Scenarios, which are

also linked to User Stories. Although Breitman proposal aims if different from ours,

both approaches rely on the same elements. Both approaches have an LEL that pro-

vides the vocabulary, and the User Stories are linked to the LEL.

Ianzen et al. [14] propose an approach to defining the scope in software product

lines. They propose a tool to analyze the documents and extract features that specialist

must analyze instead of analyzing the whole documents. Our approach is similar be-

cause our domain LEL can be considered the summary their approach obtain from the

documents. Lucassen et al. [22] propose an approach to produce high-quality User

Stories. Their way of reaching high quality is in part linking User Stories to a lan-

guage with a similar structure the LEL has. Waldmann et al. [30] propose an approach

to developing agile requirements in any types of software development. Although our

experiment compared User Stories, the derivation strategies proposed by Antonelli et

al. in [1] also considers Use Cases. So, our proposed approach of limiting the domain

LEL to an application LEL could be used in combination with Use Cases.

6 Conclusions and Future Works

Agile methodologies seem to be the solution to problems of time and cost overrun

in software development. Nevertheless, it is difficult for organizations to move to an

agile development process. The key challenge for them is mastering the process of

identifying and describing User Stories. We have presented an approach to limit the

domain language captured with LEL to produce a new LEL that only describe the

application language. Consequently, User Stories can be derived from this application

LEL.

We believe that the proposed approach is useful from several points of view.

Teams that regularly use the LEL will be benefited with the proposed approach. The

preliminary experiment showed the advantage of our approach in the writing process

of User Stories, which are of similar quality to the ones created in the regular process

and are obtaining with low effort.

People that do not use regularly LEL has the extra effort of building the LEL.

Nevertheless, the LEL captures the language of the domain, and the process of captur-

ing the language is implicitly performed although the LEL is not produced. Thus, the

extra effort relies on writing the LEL. It was experienced the advantages of construct-

ing the LEL in the regular way [10] [12] [17]. Moreover, we worked in a process to

build the LEL in a collaborative way [3], and we are currently working on a tool that

makes it possible this construction. We are going to perform further experimentation

to compare the whole process of writing User Stories including the LEL domain con-

struction.

We can relate the benefits of our approach with the use of domain specific lan-

guages against the general-purpose modeling languages. Kosar et. al. [19] did an ex-

periment that compares DSLs with GPLs, and they have proven the benefits of the

DSLs in all the cognitive dimensions.Regarding the transformation from domain LEL

to application LEL we are working on the possibility that new elements will appear in

the application LEL that are not present in the domain LEL. Sometimes, software

application adapts or transforms the context where the application is introduced, and

sometimes application includes elements that only belong to the domain. That is why

we are working in extending the approach.

References

1. Antonelli, L., Rossi, G., Leite, J.C.S.P., Oliveros, A.: Deriving requirements specifications

from the application domain language captured by Language Extended Lexicon, Work-

shop in Requirements Engineering (WER), Buenos Aires, Argentina (2012)

2. Antonelli, L., Rossi, G., Leite, J.C.S.P., Oliveros, A.: Buenas prácticas en la especificación

del dominio de una aplicación, Workshop in Requirements Engineering (WER), Montevi-

deo, Uruguay, April 8 – 10 (2013)

3. Antonelli, L., Rossi, G., Oliveros, A.: A Collaborative Approach to Describe the Domain

Language through the Language Extended Lexicon, Journal of Object Technology

15(3):3:1, DOI: 10.5381/jot.2016.15.3.a3, June (2016).

4. ATL a model transformation technology, http://eclipse.org/atl/

5. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach, in Ency-

clopedia of Software Engineering, John Wiley & Sons, Vol. 1, pp.528-532 (1994)

6. Breitman, K.K., Leite, J.C.S.P.: Managing User Stories, in Proceedings of the Internation-

al Workshop on Time Constrained Requirements Engineering, Essen, Germany (2002)

7. Brooks, F., The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley

Professional, 2 edition (1995)

8. Cao, L., Ramesh, B.: Agile Requirements Engineering Practices: An Empirical Study,

IEEE software volume 25 issue 1, DOI 10.1109/MS.2008.1, Jan-Feb, pp. 400-403 (2008)

9. Cohn, M.: User Stories Applied, Addison Wesley, ISBN 0-321-20568-5 (2004)

10. Cysneiros, L.M., Leite, J.C.S.P.: Using the Language Extended Lexicon to Support Non-

Functional Requirements Elicitation, in proceedings of the Workshops de Engenharia de

Requisitos, Wer’01, Buenos Aires, Argentina (2001)

11. Feldt, R., Magazinius, A.: Validity threats in empirical software engineering research - An

initial survey, in proceedings of the 22nd International Conference on Software Engineer-

ing and Knowledge Engineering (SEKE), July 1-3, San Francisco Bay, pp 374-379 (2010)

12. Gil, G.D., Figueroa, D.A., Oliveros, A.: Producción del LEL en un Dominio Técnico. In-

forme de un caso, in proceedings of the Workshops de Engenharia de Requisitos, Wer’00,

Rio de Janeiro, Brazil (2000)

13. Hudson, W.: User Stories Don’t Help Users: Introducing Persona Stories, Interactions of

ACM, DOI: 10.1145/2517668, Nov/Dec (2013)

14. Ianzen, A., Malucelli, A., Reinehr, S.: Scope definition in software product lines: A semi-

automatic approach through linguistic annotation, XXXVIII Conferencia Latinoamericana

En Informatica (CLEI), Medellin, doi: 10.1109/CLEI.2012.6427193 , pp. 1-9 (2012).

15. IEEE, IEEE Recommended Practice for Software Requirements Specifications, IEEE Std

830-1998 (Revision of IEEE Std 830-1993)

16. Issa, A.A., Ali, A.I.: Automated requirements engineering: Use case patterns-driven ap-

proach, IET software vol 5 issue 3, DOI 10.1049/iet-sen.2010.0014, pp 287-303 (2011)

http://eclipse.org/atl/
ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf
http://dx.doi.org/10.1109/MS.2008.1
http://en.wikipedia.org/wiki/Special:BookSources/0321205685
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Magazinius:Ana.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Issa,%20A.A..QT.&newsearch=true
http://dx.doi.org/10.1049/iet-sen.2010.0014

17. Kaplan, G., Hadad, G., Doorn, J., Leite, J.C.S.P.: Inspección del LexicoExtendido del

Lenguaje, Workshops de Engenharia de Requisitos, Wer’00, Rio de Janeiro, Brazil (2000)

18. Kovitz, B.: Practical software requirements: A manual of content and style, ISBN978-

1884777592, Ed. Manning Publications (1998)

19. Kosar, T., Oliveira, N., Mernik, M., Pereira, M. J. V., Črepinšek, M., da Cruz, D., Hen-

riques, P. R.: Comparing General-Purpose and Domain-Specific Languages: An Empirical

Study, Computer Science and Information Systems, Vol. 7, No. 2. pp. 247-264 (2010)

20. Leite, J.C.S.P., Franco, A.P.M.: A Strategy for Conceptual Model Acquisition, in Proceed-

ings of the First IEEE International Symposium on Requirements Engineering, San Diego,

California, IEEE Computer Society Press, pp 243-246 (1993)

21. Leite, J.C.S.P., Hadad, G., Doorn, J.H., Kaplan, G. N.: A Scenario Construction Process,

Requirements Engineering, Volume 5, Issue 1, pp 38–61 (2000)

22. Lucassen, G., Dalpiaz, F., Brinkkemper, S., van der Werf, J. M. E. M.: Forging High-

Quality User Stories: Towards a Discipline for Agile Requirements. In Proceedings of the

IEEE International Requirements Engineering Conference (2015)

23. Maiden, N., Jones, S.: Agile Requirements Can We Have Our Cake and Eat It Too?, IEEE

software volume 27 issue 3, DOI 10.1109/MS.2010.67, May-Jun, pp 87-88 (2010)

24. Maiden, N.: Exactly How Are Requirements Written?, IEEE software volume 29 issue 1,

DOI10.1109/MS.2012.6, Jan-Feb, pp26-27 (2012)

25. Mohan, K., Ramesh, B., Sugumaran, V.: Integrating Software Product Line Engineering

and Agile Development, IEEE software volume 27 issue 3, DOI 10.1109/MS.2010.31,

Feb, pp48-55 (2010)

26. Oliveira, A.d.P.A., Leite, J.C.S.P.: Cysneiros, L.M., Cappelli, C.: Eliciting Multi-Agent

Systems Intentionality: from Language Extended Lexicon to i* Models, in proceedings of

XXVI International Conference of the Chilean Society of Computer Science (SCCC '07),

8-9 Nov, pp 40 – 49 (2007)

27. Oliveira, A.d.P.A., Leite, J.C.S.P.: Building Intentional Models Using the ERi*c Method,

Cadernos do IME: Série Informática, Vol. 31, Dezembro 2011, pp 46 / 53 (2011)

28. Savolainen, J., Kuusela, J., Vilavaara, A.: Transition to Agile Development - Rediscovery

of Important Requirements Engineering Practices, in Proceeding of the 18nd IEEE Interna-

tional Requirements Engineering Conference (RE), IEEE, ISBN 978-1-4244-8022-7, DOI

10.1109/RE.2010.41, sept 27-oct 1, Sydney, pp 289 – 294 (2010)

29. The risk digest, forum on risks to the public in computers and related systems,

ACM committee on computers and public policy, available at

http://catless.ncl.ac.uk/Risks/, accessed on September (2015)

30. Waldmann, B., Phonak, A.G.: There's never enough time: Doing requirements under re-

source constraints, and what requirements engineering can learn from agile development,

19th IEEE International Requirements Engineering Conference (RE), IEEE, ISBN 978-1-

4577-0921-0, DOI 10.1109/RE.2011.6051626, Trento, pp 301 – 305 (2011)

31. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimenta-

tion in software engineering an introduction, ISBN 0-7923-8682-5 Academic Publishers

(2000)

32. Wood, L.E.: Semi-structured interviewing for user-centered design, Interactions of the

ACM, april-may, pp48-61 (1997)

http://link.springer.com/journal/766/5/1/page/1
http://dx.doi.org/10.1109/MS.2010.67
http://dx.doi.org/10.1109/MS.2012.6
http://dx.doi.org/10.1109/MS.2010.31
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Savolainen,%20J..QT.&searchWithin=p_Author_Ids:37338574900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Savolainen,%20J..QT.&searchWithin=p_Author_Ids:37338574900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vilavaara,%20A..QT.&searchWithin=p_Author_Ids:37444576900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6036256
http://dx.doi.org/10.1109/RE.2010.41
http://www.acm.org/
http://catless.ncl.ac.uk/Risks/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Waldmann,%20B..QT.&searchWithin=p_Author_Ids:37683669300&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6036256
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6036256
http://dx.doi.org/10.1109/RE.2011.6051626

