
Tailoring the NFR Framework for Measuring
Software Ecosystems Health

Simone da Silva Amorim1, Sandro Santos Andrade1, John D. McGregor2,
Eduardo Santana de Almeida3, and Christina von Flach G. Chavez3

1 Federal Institute of Education, Science and Technology of Bahia, Bahia, Brazil
simone.amorim@ifba.edu.br, sandroandrade@ifba.edu.br

2 Clemson University, South Carolina, USA
johnmc@cs.clemson.edu

3 Federal University of Bahia, Bahia, Brazil
esa@dcc.ufba.br, flach@ufba.br

Abstract. A healthy software ecosystem is capable of maintaining pro-
ductivity and attractiveness, even in the face of problems and disrup-
tions. Some studies have used software metrics to measure the health of
a software ecosystem; however, there is little agreement on how to mea-
sure those aspects related to software architecture nor how to weigh their
influence on the health state of the ecosystem. This paper introduces an
approach to measuring and assessing the state of a software ecosystem’s
health that is aware of the architectural practices used. The approach
uses a variation of the softgoal interdependence graph belonging to NFR
(Non-Functional Requirements) framework on goal modeling. The key
idea is to model and estimate influences of architectural practices on the
health indicators. This research carried out an exploratory case study
in the KDE ecosystem. KDE architectural practices were identified and
analyzed with the support of our proposed practice-aware approach. The
findings present the measurable influences that can be used to support
decision-making processes related to architectural practices.

Keywords: Software Ecosystems · Software Architecture · Non-Functional
Requirements · NFR framework · Health Measures.

1 Introduction

The quality of a software architecture, which will be used as the basis for many
different systems, is critical to the success of those systems. In recent years orga-
nizations have been joining together to form communities and ecosystems to face
problems and achieve common goals. The engagement in a software ecosystem
allows participants to share problems, solutions and benefits among members of
the community. Changes to the utility of a software architecture emerge much
like the health of a person changes in response to changes in the environment.

A software ecosystem “refers to a collection of software products that have
some given degree of symbiotic relationships” [14]. Organizations can take ad-
vantage of group work and launch new products faster than if they were working



2 Simone Amorim et al.

individually. Immersed into an environment of collaboration but also of compe-
tition, many participants have grown quickly and kept their success for several
years [1, 2]. This success can be represented partially by the health state of the
software ecosystem.

The health of a software ecosystem has been defined by Iansiti and Levien as
“the growing and continuity of the software ecosystem remaining variable and
productive over time” [9]. Awareness of the health state of a software ecosystem is
relevant to support decision-making in different areas such as business processes,
software design, and social interactions. Stakeholders can decide to enter or leave
the ecosystem, or to keep their participation. Iansiti and Levien proposed three
health indicators, robustness, productivity, and niche creation to be used in
health evaluation of software ecosystems [9].

The health evaluation of a software ecosystem is not a trivial activity and
faces complex and challenging tasks. There are obstacles in defining which met-
rics can be measured, how to work with highly abstract metric, and so on. Most
of existing proposals [9, 12, 8] propose metrics to gather values that may relate
to or impact health indicators.

Previously we proposed an approach to evaluating the health of open source
software ecosystems based on the identification of technical, social and business
practices [4] adopted by the software ecosystem and the assessment of their influ-
ence on health indicators [9]. This work proposed a variation of the NFR Frame-
work [15] [5] that introduced the concept of practices [11]. The NFR Framework
is a process-oriented framework that supports a qualitative treatment of Non-
Functional Requirements (NFRs) and relates them to design decisions taken
during software development, with the support of Softgoal Interdependency
Graphs (SIG) [7]. Our approach Health Evaluation for Software Ecosystems/-
Software Architecture (Heval/SA) uses a variation of the softgoal interdepen-
dence graph belonging to NFR framework. We introduced SIG with Practices,
hereafter SIG-P, that models influences of architectural practices on the health
indicators. Our ongoing work Heval/SA is initially composed by for two steps:
Softgoal Designing and Influence Measuring. Practices used in the KDE ecosys-
tem were collected from different sources, and preliminary versions of SIG-P
were drawn for each architectural key area.

Aiming to support a quantitative way to estimate the degree of influence
of architectural practices on the health indicators, we also adapted the idea of
measuring on SIG-P levels proposed by Subramanian et al. [17]. We conducted a
case study to validate our approach with the KDE ecosystem. Forty four archi-
tectural practices were collected after interviews with KDE developers and or-
ganized around 3 keys areas related to software architecture. KDE architectural
practices were represented with SIG-Ps. They supported the measures achieved
for the KDE architectural health.

This paper is organized as follows. Section 2 presents related work. Section 3
presents background on architectural health. Our approach is described in Sec-
tion 4. Section 5 presents the methodology. Results are described in Section 6.
Lessons learned are presented on Section 7. Section 8 describes the limitations



Tailoring the NFR Framework for Measuring SECO Health 3

of the approach used. Finally, Section 9 provides some concluding remarks and
future work.

2 Related Work

This section presents related work that addresses the health evaluation of soft-
ware ecosystems and different perspectives of applications for the NFR Frame-
work.

Starting with Health of Software Ecosystems, Jansen’s work [12] introduced
the Open Source Ecosystem Health Operationalization (OSEHO) framework, a
new approach to measuring health using the three health indicators proposed
by Iansiti and Levien [9]. Jansen collected a set of measures from literature and
refined to choose relevant metrics to his model. Jansen’s work [12] covered large
aspects of the health of software ecosystems, but also had problems to handle
metrics that could not be extracted effectively. All projects reported on lack of
data, abstract metrics that could not be measured, and metrics with ambiguous
definitions. His work stumbled on the difficult of obtaining practical data to work
with several metrics, posing questions on how to get effective data and how to
use data productively.

An approach to improving and preserving the health of hardware-dependent
software ecosystems with a governance model was proposed by Wnuk [19] to
investigate the governance model activities focusing on the health indicators. For
each indicator, governance activities were evaluated depending on to what degree
the activity was performed as: yes, no or partially. This way, they gathered the
degree of contribution of these activities to achieve health. Their model showed
relationships between activities and health indicators.

Lastly, Franco-Bedoya et al. [8] proposed a quality model to evaluate impor-
tant quality characteristics as the health of open source software ecosystems.
From a systematic literature review, they classified and reorganized a set of 68
measures to incorporate them into the QuESo model. Their model considered
grade quality characteristics and measures to achieve the health state. Similarly
to Jansen’s work [12], they reported that unavailability of some measure values
hindered the creation of a comprehensive quality assessment process.

Our work shares some aspects with related work on health evaluation: focus
on the health of open source software ecosystems, use of health indicators, and
the concern with handling the influence of practices on these indicators. However,
our work differs from those in the literature and provides a process-oriented
approach to health evaluation based on the NFR Framework [15].

Considering related work to NFR Framework, in 1992, Mylopoulos, Chung
and Nixon introduced the NFR Framework [15] as a process-oriented framework
that provided a qualitative treatment of non-functional requirements, and re-
lated them to design decisions taken during the software development process.
These design decisions could affect positively or negatively NFRs [15, 5]. They
introduced the concept of “softgoal” to denote an ill-defined goal, and intro-
duced the Softgoal Interdependency Graph (SIG) to represent whether a design



4 Simone Amorim et al.

decision contributed positively or negatively to satisfying a particular goal or
requirement, under the architect or developer’s perspective. Other authors have
adapted and discovered new uses for the NFR Framework [17, 18, 16, 13].

Subramanian et al. introduced the Process-Oriented Metrics for Architecture
Evolvability (POMSAE) approach to develop architectural evolvability metrics
and analyze the cause of strengths and weaknesses for the metrics [17]. Their
work developed a qualitative framework to generate quantitative numbers for
the NFRs. The POMSAE framework encompassed a set of softgoals, methods,
correlation rules, and metrification schemes to map labels to numbers. Subse-
quently, Subramanian et al. used the NFR Framework to quantitatively evaluate
the safety and security properties for cyberphysical systems [18], and proposed
the degree of satisfaction as a measure for the satisfaction of stakeholders with
respect to requirements for safety and security.

Ruiz-López et al. proposed a pattern-based approach to clarify and capture
NFRs such as usability or privacy for ubiquitous computing [16].

Finally, Mehta et al. applied the NFR Framework to analyze smartphone
applications. They proposed a goal-oriented approach to explore and select al-
ternatives to satisfy NFRs specially for the particular characteristics of smart-
phones [13].

Most of the related work described above focus on different uses for the
NFR Framework and benefit from the support given by the NFR Framework
to mapping and analyzing influences in diverse situations. Our work adapts the
original NFR Framework [15, 5] and part of the POMSAE Framework [17] and
focuses on qualitative and quantitative analysis with the support of SIG-P.

3 Architectural Health of Software Ecosystems

Years ago, Iansiti and Levien introduced the concept of health of software ecosys-
tems [9]. Since then, several researchers have developed efforts to achieve forms
to measure this health. In previous work, we proposed the idea to study one part
of this health – the portion concerning the impact of the software architecture
on the health. With this in mind, we advocate that the architectural health of
software ecosystems “is composed of the parts of the ecosystem health influ-
enced by architectural issues”[3]. This definition is supported by the belief that
the creation and maintenance of the software architecture “weigh” directly on
the behavior of the health indicators.

In addition, we observed that the software architecture is designed under
several influence factors such as: requirements, time, goals, experience of the
architect, resources, and so on. Leading with these factors, architects develop
a series of practices to maintain the architecture. They provide a picture of a
specific aspect of software development describing outcomes, and how to achieve
them. Moreover, these practices face specific parts of the problem inside estab-
lished limits, allowing to measure the success of their application [11]. Even more,
the use of a practice causes impact in different parts of the ecosystem, including
contributions positive or negative to the state of the health indicators[3].



Tailoring the NFR Framework for Measuring SECO Health 5

Table 1. Types of Non-Functional Requirements from ISO/IEC FDIS 25010

Types of NFR Description

Functional Suitability Degree to which a product or system provides functions that
meet stated and implied needs when used under specified con-
ditions

Performance Efficiency Performance relative to the amount of resources used under
stated conditions

Compatibility Degree to which a product, system or component can ex-
change information with other products, systems or compo-
nents, and/or perform its required functions, while sharing
the same hardware or software environment

Usability Degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use

Reliability Degree to which a system, product or component performs
specified functions under specified conditions for a specified
period

Security Degree to which a product or system protects information and
data so that persons or other products or systems have the
data access appropriate to their types and levels of authoriza-
tion

Maintainability Degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers

Portability Degree of effectiveness and efficiency with which a system,
product or component can be transferred from one hardware,
software or other operational or usage environment to another

Based on these observations, we organized these architectural practices into
key areas to help development and foster comprehension of their effects. The
architectural key areas are: (i) Architectural Knowledge; (ii) External Man-
agement; (iii) Choice of Technology; (iv) Resources Management; (v) Design-
Making; (vi) Quality Management, and (vii) Change Management.

4 Health Evaluation for Software Ecosystems

The NFR Framework-with-Practices [4] is an extension to the NFR Frame-
work [15, 5, 6], a goal-oriented framework used to represent and analyze NFRs.

The NFR Framework-with-Practices supports health evaluation of software
ecosystems based on the practices they use. Such evaluation relies on SIG-P
models [4], that is, SIG models [6] extended with practices – that represent
the influence of practices on non-functional requirements of concern and health
indicators [9]. The use of practices should be properly assessed by means of
measures of their successful application [11]. Our NFR Framework-with-Practices
represents: (i) the influence of a practice on every NFR of concern, and (ii) the
influence of a NFR on each softgoal on the top level of the SIG-P. In the context
of software ecosystems, softgoals are productivity, robustness, and niche creation,
the three ecosystem health indicators [9].



6 Simone Amorim et al.

(a) Form A (b) Form B

Fig. 1. Forms A and B

The present work introduces the Heval/SA. It brings a refined version of
our first study [4]. In this version, SIG-P uses non-functional requirements de-
fined and elaborated by the International Standard ISO/IEC FDIS 250104. Such
standard defines a quality model encompassing eight important characteristics
to software products and computer systems, that “provide consistent terminol-
ogy for specifying, measuring and evaluating system and software product qual-
ity” [10]. These eight characteristics stand as the non-functional requirements of
concern used by our approach (Table 1).

To evaluate the architectural health of a software ecosystem with the support
of two steps of the Heval/SA, an architect or experienced developer must be
designated to play the role of evaluator. She is expected to perform two steps:
Softgoal Designing and Influence Measuring. Softgoal Designing are composed
by two activities: (i) Analysis of architectural practices and (ii) Representation
with SIG-P graphs. Influence Measuring is composed by measurement activity.

4.1 Softgoal Designing - Analysis of Architectural Practices

Analysis is concerned with examining carefully the architectural practices to
identify their effects on the ecosystem health. First, the evaluator analyses the
influences, documenting their reasoning and values for their contribution. Start-
ing with the practices implemented in an ecosystem under evaluation, the eval-
uator should fill Form A (Figure 1(a)) to register the influence of each practice
on every NFR of concern (Table 1). The influence of a practice on a NFR can
be positive (+) or negative (-), and is labeled with one of three values: 0 - no
influence, 1 - partial influence and 2 - fully influence.

Secondly, an analysis of the influences of NFR on each softgoal is performed.
The evaluator should fill Form B (Figure 1(b)) for each health indicator / soft-
goal, registering the reasoning and values for their contribution. The influence
of a NFR on a softgoal can be positive (+) or negative (-), and labeled with one
out of five values: 0 - no influence, (+) HELP the influence, (++) MAKE the
influence, (-) HURT the influence, and (–) BREAK the influence.

The output of analysis is a set of forms registering reasonings and values
of contribution to measure the degree of the effects of the architectural prac-
tices on health indicators. Based on these forms, the evaluator can draw the
corresponding SIG-P for the ecosystem.

4 Systems and Software Engineering – Systems and Software Quality Requirements
and Evaluation (SQuaRE) – System and Software quality models



Tailoring the NFR Framework for Measuring SECO Health 7

4.2 Softgoal Designing - Representation with SIG-P Graphs

Representation is concerned with the creation of a SIG-P graph.

Fig. 2. SIG-P Graph

Figure 2 presents the SIG-P Model. The base level consists of graph elements
that represent the architectural practices. Two letters are used to designate
the key area associated with each architectural practice (for instance, AK for
Architectural Knowledge) and a number identifies each practice.

The middle level consists of graph elements that represent NFRs. They have
associated labels named after each NFR of concern. Relations between base
level and middle level elements, called influence links, are represented by dashed
arrows. Each influence link is labeled with the assigned value for the influence
of a practice on a NFR.

The top level represents the three health indicators as softgoals, each one
named after the corresponding indicator. Relations between middle level and
top level elements are represented by solid arrows, also called influence links.
These influence links are also labeled with a value that represents the degree of
influence of each NFR on a health indicators.

Based on the information provided in forms A and B, the evaluator can draw
the SIG-P graphs (Figure 2). There is an associated graph for each key area.
To facilitate visualization, influence links with value zero (no influence) are not
exhibited.

4.3 Influence Measuring - Measurement

Measurement is concerned with calculating, for each key area, the value of influ-
ence of architectural practices on NFRs, and the value of influence of NFRs on
health indicators. The value of influence for each key area is determined based
on the values informed on forms A (figure 1(a)) and B (figure 1(b)).

infP = [

N∑
k=1

vPk)/(2 ∗N)] ∗ 100 (1)



8 Simone Amorim et al.

Formula 1 is used to calculate infP , the value of influence of a set of ar-
chitectural practices P on a NFR. Each vPk (k = 1, 2, ..., N) represents the
assigned values of influence of each practice, and N represents the size of set P
for a key area. Since 2 is the maximum absolute value assigned to some vPk,
2 ∗ N stands for the maximum value for the set of practices P . We calculate
infP as the proportion of the sum of assigned values of influence with relation
to the maximum value for the set of practices P in the key area.

The value of influence of a set of non-functional requirements NFR on a
softgoal S is estimated based on the values of influence calculated for each nfr
that belongs to NFR.

V nfr = (V anfr ∗ infP )/100 (2)

First, Formula 2 is used to estimate the value of influence of a non-functional
requirement nfr on a softgoal S. We assume that the value of influence for a
non-functional requirement nfr (V nfr) is the relative amount of the assigned
value (V anfr) to the value of influence of practices (infP ). For example, if the
assigned value was +1, and the value of influence of practices was 50%, the value
of influence of a non-functional requirement nfr is 50% of +1.

V hea = [

Nnfrs∑
k=1

V nfrk/(2 ∗Nnfrs)] ∗ 100 (3)

Formula 3 is used to calculate V hea, a value that represents the overall
influence of a set of non-functional requirements NFR on a softgoal S. The value
of V hea is estimated based on the values of influence calculated for each nfr in
NFR. We use a percentage for each representative influence to calculate V hea.
Each V nfrk (k = 1, 2, ..., Nnfrs) represents the assigned value of influence of
each NFR on a softgoal. Then we calculate the proportion of the sum of assigned
values of influence of NFRs (V nfr) with relation the maximum value for the
total number of NFRs.

5 Case Study Design

The goal of this research is to provide a new approach to measure the influence of
architectural practices on health indicators of software ecosystems. The proposed
approach can be used to evaluate the health status of open source software
ecosystems. It does so by capturing some architectural practices of the KDE
ecosystem and applying the Heval/SA presented in Section 4. Practices were
gathered by interviews with some KDE developers. Following, we detail the
research methodology.

5.1 Data Collection

To gather architectural practices from KDE ecosystem, we conducted interviews
with three KDE members: two of them were software architects / experienced



Tailoring the NFR Framework for Measuring SECO Health 9

Table 2. Architectural Practices of Architectural Knowledge

Identity Architectural Knowledge

AK1 Architect leaders provide some tutorials and/or video courses for the technol-
ogy available

AK2 Build maps of modules and runtime elements during face-to-face meetings

AK3 Create personal blogs and/or wikis to inform about the development and
architectural issues

AK4 During code review, provide feedback information about architecture, good
practices to code, doing refactoring and show the best way to solve the prob-
lems

AK5 Document APIs daily

AK6 Provide mentoring programs to training new developers

AK7 Keep different architects with different levels of specialty to spread the knowl-
edge in the community

AK8 Provide code recommendations, defining a standard in the community

AK9 Provide a development manual for newcomers to know how to start contribut-
ing

AK10 Keep a register of meetings available to community to know all decisions of
the meeting

developers and one was a newcomer developer. The experienced architects have
worked in different KDE projects over the years, transitioning between roles
such as developer, architect, committer, maintainer, or board participant. Based
on their expertise, we were able to collect architectural practices for the whole
ecosystem. In addition, the interview with the newcomer developer brought use-
ful information about training and architectural practices used, from a different
perspective.

The interviews were conducted using Skype5, and simultaneously, the inter-
viewees had access to the text of all questions. First, there was a short text
introducing the context and objectives of the interview. The text also provided
information about use of data and confidentiality of participants.

The interview scope covered important topics of Software Architecture. The
set of questions encompassed 7 key areas related to architectural health, as
defined in our previous work [3]. The interview was semi-structured and had
30 open-ended questions. The first 5 questions intended to collect the profile of
the interviewees. The other aimed at understanding which daily architectural
practices were used in the KDE ecosystem.

5.2 Data Analysis

The interviews were audio-recorded and later they were analyzed by the authors.
Forty four architectural practices were identified and organized with respect to 7
key areas of architectural health. Each practice was classified and associated to
one key area. For example, the practice “Provide mentoring programs to training
new developers” was assigned to Architectural Knowledge area. Table 2 shows
the set of practices related to the Architectural Knowledge key area.

5 www.skype.com



10 Simone Amorim et al.

After cataloging architectural practices, we analyzed their influence on each
NFR to build the SIG-P. Due to space limitation, we present the results for 3
out of 7 key areas analyzed: Architectural Knowledge, Choice of Technology and
Quality Management. For each architectural practice, we analyzed its influence
for the 8 NFRs presented previously.

After classifying influences from practices to NFRs, we examined influences
of NFRs on health indicators. Another form was filled out following the model
presented in Figure 1(b).

Influences from practices to NFRs and from NFRs to health indicators served
as input to shape SIG-P graphs. The reasonings and values of contribution for
these influences were reviewed by the authors. For each filled out form, one au-
thor created the form and the others inspected the results. All disagreements
were discussed by the group to achieve a final result. The questions of the inter-
view, the list of practices, and the forms filled out by authors are available at
http://www.professores.ifba.edu.br/simoneamorim/measures/.

6 Case Study Results

We applied our Heval/SA to evaluate the health of the KDE ecosystem based
on architectural practices of three key areas: Architectural Knowledge, Choice of
Technology, and Quality Management. For each key area, we have analyzed KDE
architectural practices, we filled out form A (Figure 1(a)) to relate architectural
practices to NFRs and form B (Figure 1(b)) to relate NFRs to health indicators.
After analysis, three instances of SIG-P were created, one for each key area.

Figure 5 presents a SIG-P for Architectural Knowledge, with 10 architectural
practices linked to one or more non-functional requirements, which in turn, are
connected to health indicators.

Each SIG-P served as input to measuring the values of influences for the
corresponding key area. From the base level of a SIG-P, the influence of the
practices on NFRs is calculated, using formula 1. Figure 4 shows the results of
influence for practices of Architectural Knowledge considering each NFR.

To estimate the influence of NFRs on softgoals, we applied formula 2 and
formula 3. Figure 3 presents the resulting values for three key areas. Due to
space limitation, SIG-P graphs and tables with the results of the calculations,
Choice of Technology and Quality Management, are available only at our website:
http://www.professores.ifba.edu.br/simoneamorim/measures/.

7 Lessons Learned

Our study evaluates the architectural health of the KDE ecosystem. Applying
our Heval/SA, we performed qualitative and quantitative evaluations for influ-
ences on health indicators. Regarding the values obtained for influences on the
NFRs for Architectural Knowledge key area, we can observe that the majority
of practices impact on Maintainability and Security. See figure 3. Besides,



Tailoring the NFR Framework for Measuring SECO Health 11

Fig. 3. Influence on NFRs

Fig. 4. Influence on Softgoals

a low percentage of these practices impacts on Reliability and Portability.
These values detect the need to invest more in practices to increase the influ-
ence rate for NFRs with low impact. A healthy ecosystem should have positive
influences for all NFRs.

Moreover, analyzing the top level of the SIG-P, in figure 5, we observed
that Functional Suitability and Usability influence only one indicator and
Portability has a major number of negative influence on health indicators.
Considering the values calculated, negative influences are not perceived, but the
results in general reveal a low percentage of influence, less than 50%. This sig-
nalizes the need to rethink about dynamic interactions among of the practices
to enhance these numbers positively. In addition, the figure 4 shows key areas
having a stronger influence on the Robustness indicator. Our approach allows



12 Simone Amorim et al.

Fig. 5. SIG-P for Architectural Knowledge

analyzing variations in the results. An evaluator can try to assign different val-
ues applying the approach to observe different results. After, he can visualize
different options of ways to follow in his decision-taking process. This way, our
approach provides support to the judgment of possible actions.

The study further presents a set of benefits such as: (i) Catalog of architec-
tural practices - from interviews we got several practices used by KDE, but which
also can be used by majority of open sources software ecosystems; (ii) Capture
tacit knowledge - got the wisdom that is not registered formally though actions
of developers; (iii) Measurable influences - a quantitative way to perceive the
influence of practices; and (iv) Graph-based perception for influences - a clear
way to observe and identify the impact of the influences.

In the context of software ecosystem health several approaches offered mech-
anisms to extract metrics. However, some of them faced some problems as the
fact of having abstract metrics that are difficult to get in practice. Others should
analyze the nature of the metric, if it is harmful or helpful [12]. Our approach
intends to be as practical as possible, being easy and useful. The qualitative
analysis depends on the background of the evaluator, but the quantitative anal-
ysis is simple to apply. Through the use of proper practices, the approach also
contributes to building not only “good” architectures that work well at the mo-
ment but creating “healthy” architectures that will contribute to the continuity
of the ecosystem increasing new projects, activities, and developers.

Notwithstanding the benefits promoted by our approach, we report some
restrictions. These results not determine what practices are more important.
Furthermore, the approach does not provide a schema to compare results among
ecosystems of similar size and in the same domain. For this, we will need addi-
tional deeply studies.



Tailoring the NFR Framework for Measuring SECO Health 13

8 Threats to Validity

We have performed our case study with scientific rigor, but the process can have
suffered from some limitations. There is a potential bias considering the inter-
views, where the number of respondents or their level of experience cannot be
enough to cover all KDE architectural areas. There are also limitations regarding
practices not captured during the interview process or some misunderstanding
by the interviewer. To reduce this risk, the practices were inspected by other
authors.

Additionally, there is a risk of bias of the researchers. The analysis process
is influenced by the vision of the researchers. The judgment is in accordance to
his/her architectural background. To reduce this bias, all results of the analyzing
process were discussed by the authors. Finally, the last threat is whether the
conclusions can be generalized to different organizations. In our work, we only
collected KDE practices, but we believe to have captured many characteristics
that are general to the architectural process for open source ecosystems. This
way, further studies are needed for other ecosystems.

9 Conclusion

In this paper, we have described a case study for measuring the health of an open
source software ecosystem. The basis for the analysis was a set of architectural
practices collected from KDE ecosystem. These practices were gathered from
a series of interviews with relevant members of this ecosystem. Regarding the
practices collected, we applied our Heval/SA approach to build SIG-P graphs
and calculate the level of influence of architectural practices on health indicators.

The results demonstrated that the influence of architectural practices is con-
centrated on Maintainability, and a low number of the studied practices in-
fluences Reliability and Portability. Besides, general findings for influences
considering three key areas show a low percentage of influence on the health
indicators. These outcomes emphasize the need for analyzing practices in detail
to enhance their contribution to achieve a health state. This case study is a
first step to apply our approach to measure the architectural health of software
ecosystems. We intend to conduct additional case studies with other open source
software ecosystems in the future to verify our outcomes.

Acknowledgments: This work was partially supported by PRPGI/IFBA.

References

1. Android’s Success: by the Numbers. Information Week (2012),
http://www.informationweek.com/mobile/mobile-devices/androids-success-
by-the-numbers/d/d-id/1103058

2. Global Hadoop Market – industry analysis, size, share, growth, trends and
forecast 2012 – 2018. Transparency Market Research - White Paper (2013),
http://www.transparencymarketresearch.com/hadoop-market.html



14 Simone Amorim et al.

3. Amorim, S., McGregor, J., Almeida, E., Chavez, C.: Software ecosystems′ architec-
tural health: Another view. In: Proc. of the 5th ICSE Int. Workshop on Software
Engineering for SoS and 11th Workshop on Distributed Software Development,
Software Ecosystems and SoS. pp. 66–69. SESoS/WDES ’17 (2017)

4. Amorim, S., McGregor, J., Almeida, E., Chavez, C.: Understanding the effects of
practices on kde ecosystem health. In: Balaguer, F., Di Cosmo, R., Garrido, A.,
Kon, F., Robles, G., Zacchiroli, S. (eds.) Open Source Systems: Towards Robust
Practices. pp. 89–100. Springer International Publishing, Cham (2017)

5. Chung, L.: Representing and Using Non-Functional Requirements: A Process-
Oriented Approach. Ph.D. thesis, University of Toronto (1993)

6. Chung, L., Mylopoulos, J., Yu, E.: Non-Functional Requirements in Software En-
gineering. Int. Series in Software Engineering, Kluwer Academic Publishers (1999)

7. Chung, L., Nixon, B.A.: Dealing with Non-functional Requirements: Three Exper-
imental Studies of a Process-oriented Approach. In: Proc. of the 17th Int. Con-
ference on Software Engineering. pp. 25–37. ICSE’95, ACM, New York, NY, USA
(1995). https://doi.org/10.1145/225014.225017

8. Franco-Bedoya, O., Ameller, D., Costal, D., Franch, X.: Measuring the quality of
open source software ecosystems using queso. In: Proc. of the 10th Int. Conference
on Software Technologies (ICSOFT). p. 3962 (2015)

9. Iansiti, M., Levien, R.: Keystones and Dominators: Framing Operating and Tech-
nology Strategy in a Business Ecosystem. Harvard Business School 3(61) (Novem-
ber 2002)

10. ISO/IEC/FDIS: Standard 25010:2010 Systems and Software Quality Requirements
and Evaluation (SQuaRE) (2010)

11. Jacobson, I., Ng, P.W., Spence, I.: Enough of Processes – Let’s Do Practices.
Journal of Object Technology 6(6), 41–66 (2007)

12. Jansen, S.: Measuring the health of open source software ecosystems: Beyond
the scope of project health. Information and Software Technology 56, 1508–1519
(November 2014)

13. Mehta, R., Wang, H., Chung, L.: Dealing with NFRs for Smart-Phone Applica-
tions: A Goal-Oriented Approach. Software Engineering Research, Management
and Applications 430, 113–125 (2012)

14. Messerschmitt, D., Szyperki, C.: Software Ecosystem - Understanding an Indis-
pensable Technology and Industry. MIT Press Cambridge (2003)

15. Mylopoulos, Chung, L., Nixon, B.: Representing and using nonfunctional require-
ments: A process-oriented approach. IEEE Transactions on Software Engineering
18, 483–497 (1992)

16. Ruiz-López, T., Garrido, J.L., Supakkul, S., Chung, L.: A pattern approach to
dealing with nfrs in ubiquitous systems. In: Proc. of the CAiSE’13 Forum at the
25th Int. Conf. on Advanced Information Systems Engineering (CAiSE). vol. 998,
pp. 25–32 (01 2013)

17. Subramanian, N., Chung, L.: Process-oriented metrics for software architecture
evolvability. In: Proc. of the 6th Int. Workshop on Principles of Software Evolution
(IWPSE) (September 2003). https://doi.org/10.1109/IWPSE.2003.1231212

18. Subramanian, N., Zalewski, J.: Quantitative Assessment of Safety and Security of
System Architectures for Cyberphysical Systems Using the NFR Approach. IEEE
Systems Journal 10, 397–409 (June 2016)

19. Wnuk, K., Manikas, K., Runeson, P., Lantz, M., Weijden, O., Munir, H.: Evaluating
the governance model of hardware-dependent software ecosystems - a case study of
the axis ecosystem. In: Proceedings of the 4th International Conference on Software
Business (ICSOB). pp. 212–226 (June 2014)


