
Requirements: The Never-Ending Story

Julio Cesar Sampaio do Prado Leite[0000-0002-0355-0265]

IEEE Life Member

julio.leite@acm.org

Abstract. A magic medallion is central in Michael Ende’s novel, and it is

depicted as two snakes biting each other, in a loop. Folk tale says that the design

of the medallion changed for the Wolfgang Petersen’s movie, depicting an even

deeper image of infinity. The medallion turned out to be an icon for the story’s

fans. This vision paper will unleash a broad view of the realm of requirements

and requirements engineering, comparing it to Percival’s quest for the Holy Grail.

Using literate and pop metaphors the paper posits that requirements engineering

is an education process, which must be performed with transparency. Historical

misunderstandings of “requirements” is reviewed, pitfalls to avoid are signaled

and new trails to be built are proposed.

Keywords: Requirements Engineering; Misunderstandings; Software Transpar-

ency; Education

1 Introduction

The major misunderstanding about requirements is akin to the conception that software

production is marked by well-defined steps. In this conception, usually, the step for

producing a requirements document is the first one. Worse is the fact that this view is

commonly taught in universities and in training courses, as of today. In a Dagstuhl

workshop held in 2008, Professor Brooks [1] explicitly warned about this unfortunate

situation.

This misunderstanding generated and continues to generate negative impacts, like:

A. critical problems in the final product,

B. waste of resources in the production cycle,

C. lack of confidence in software engineering, and

D. lack of confidence in requirements engineering.

The title of the article is just to stress this point: the requirements artifact is a never-

ending story, as well as the field of requirements engineering itself. The paper will be

careful in explaining what that means on a broader view of the requirements engineer-

ing discipline.

However, other major misunderstandings can be listed, like:

1. failure to understand the concept of context,

2. the failure to understand the intertwining of the several levels of design,

2

3. the rush to formalize, or cast in stone, when only partial “semantics” are

available,

4. the failure to understand that by the end of the day there will be a running

code to fulfill the requirements,

5. the reliance on pictures rather than models, forgetting the real meaning of

analysis,

6. the failure to understand that the requirements is a result of a perennial

complex political negotiation, so more than just client needs, and

7. the illusion that a complete set of requirements is just the result of good

engineering.

These misunderstandings contribute to the negative impacts listed above. As such

there is one major misunderstanding and seven others that contributes to the problems

about requirements.

These 1 + 7 misunderstandings help contextualizing the complexity of the discipline

of requirements engineering. However, by equating requirements engineering to edu-

cation, an even more complex scenario will be uncovered. As such, the Arthurian leg-

end of Percival [2] and his quest will be a useful metaphor, for the understanding the

limitations of the field.

Notwithstanding, requirements can and must be engineered. Our vision posits that

requirements engineering is an education process, which must be performed with trans-

parency. The quality of transparency aims to enhance the collaboration of different sorts

of actors in each context, thus allowing for a wider participation in the process of soft-

ware construction.

The text will also point out the already available knowledge that supports this state-

ment, but also points out blanks that must be better studied.

The paper is organized as follows: Section 2 deals with the concept of requirements

evolution, which is the major misunderstanding; Section 3 details the other 7 misun-

derstandings; Section 4 reviews the concept of transparency; Section 5 outlines the ed-

ucation metaphor. Conclusion contextualizes the vision with other work, points out

what and how there is a gain from the education metaphor with transparency, and pro-

poses that new trails and bridges be built.

2 1 – One Major Misunderstanding

First, before starting this Section, let me clear. The viewpoint of the paper is not new,

since several researchers in both software engineering and requirements engineering

have pointed out the fact that requirements evolve. However, overall, this understand-

ing is not widespread.

In The Neverending Story [3], the medallion has the power to grant wishes. Portrayed

in Wolfgang Petersen’s movie [4] as two engulfing snakes, the medallion gives the idea

of an infinite loop, so it portrays the idea that the story never ends. As the medallion

has the power to grant wishes, who possess it may alter the state of the world, inventing

a new story. However, the romance [3] entails that the “new story” has only the owner

3

of the medallion as its creator. So, at the time of creation of a new story will be as the

creator wishes.

In Inception [5], Christopher Nolan proposes that a “new story” could be created in

someone dream, but in Nolan’s conception, the plot of the story could be challenged by

other participants of the dream that may come from one’s unconscious or from other

joint dreamers. Nolan’s script touches issues that the field of Consciousness [6] has

been concerned. A designed dream in Nolan’s conception is an infinite space where a

virtual world may be brought up. Differently from Ende [3], Nolan [5] does take in

account conflicts in the proposition of a “new story”.

So, what those two works have to do with requirements evolution? If you believe

that requirements is a story to be enacted by a machine, you have to consider that it

could be rewritten as long as the writer wishes; like a new wish to the medallion. On

the other hand, a “new story” delivered as a dream [5] could also be written and rewrit-

ten as one wishes. However, in Inception [5], you have to be aware that, in the “new

story”, characters may behavior as they wish (if you dream with others, or if the

dreamer, unconscious, act in an unforeseen way), this is of particular interest for being

aware of software intruders.

Using the story metaphor, a requirements artifact may be rewritten several times [3],

and the characters of the story may have behaviors different than the ones planned for

them, and other writers could interfere in the story. In the worst case, with all the un-

planned behaviors and with interference from others, the complexity of the resulting

story is unbounded.

Welcome to reality. So, if the discipline of requirements engineering fails to see that

the requirements artifact will change; problems will arise. The point is not when it will

change, but that it will change.

However, to build something, functions and qualities need to be stated. As such the

requirements artifact should be stable enough for planning the construction or thinking

about its architecture. At this crucial point, software engineering, overall, still lacks

well established anchors. It is incredible that the IEEE standards for requirements doc-

uments1 [7], and the version 3.0 (2014) of the Guide to the Software Engineering Body

of Knowledge [8] are still tied to the phased oriented view of software construction. In

the case of the Guide, it has one chapter for software construction (Chapter 3) and one

for software maintenance (Chapter 5).

Several authors and educators in software engineering preach that is possible, with

proper investment, to come up with a requirements artifact that is complete enough to

build the right product. As such, methods have been proposed to try to write the most

possible complete story before construction of the software. Many of the worst-case

stories of failure in software production come from this model. Of course, that this is

not new, different proposals for software processes came about, exactly, to answer this

point [9] [10] [11] [12] [13]. In particular, the introduction of the concept of agile de-

velopment [12], and the practice of being even more agile, by shortening the time of

deployment with DevOps [13].

1 Reaffirmed in 2009.

4

It is interesting that, in the early 80’s, Davis [14] wrote about the different strategies

of requirements determination based on the available knowledge. Davis recommends

that full investment in writing a “complete” story be performed just when there is

enough knowledge about what is needed.

Failure to understand that requirements evolve, and evolve in various times, due to

diverse types of changes, leads to negative impacts, as seen in Section 1 (Introduction).

The literature has accounts of the first (A), “critical problems in the final product” [15],

[16] and the second (B), “waste of resources in the production cycle” [17] [18] prob-

lems. For the other two problems (C) and (D), there is less literature.

The “lack of confidence in software engineering” has been addressed in two key-

notes presentations in conferences; one was by James Coplien at the SBES 2001 and

the other by Edward A. Lee at SOCA 2011. What was understood of what they said, be

aware that there is a 10-year distance among the two keynotes, is that software engi-

neering failed in delivering what was expected: robust software. The point is not a dis-

cussion if they are right or not, but there is a part of world that believe that software

engineering did not deliver what they thought it should. This is even worse, with the

emergence of Artificial Intelligence driven software, which uses the term algorithm

instead of software.

By the same token the “lack of confidence in requirements engineering” is the feel-

ing shared by some, that requirements engineering does not delivery what it promised.

Even being more than fifteen years old, the WER 20062 panel is representative. One

participant at the workshop, Suzana Oliveira, a practitioner, mentioned the term “piloto

de word” (Portuguese), which means “word driver (user)”, in the sense of one’s who

uses word as the main tool for work. She reported that the sentence is used by imple-

menters, coders, who disregard the job of those who write documents. Others complain

about the time and volume of documents produced, which, sometimes, are not used

when coding is altered, because, for instance, of the lack of proper traceability. There

are also complaints that the requirements produced, although taking time and resources,

did not tackle, for instance non-functional requirements. In particular, the case of non-

functional requirements which are still overlooked by industrial practice [19]. Again,

promises not delivered. My conclusion is that the lack of understanding of software

construction as an evolving process leads for such undesirable situations.

Back in 1997, the concept of Requirements Baseline [20] addressed the issue of evo-

lution or co-evolution. The idea is centered upon a baseline as a reference, which is in

constant evolution. Such an idea requires a powerful configuration manager that works

addressing versions both at maintenance time with versioning (meaning the act process

of the PDCA3 cycle) and the development time with configuration of parts (meaning

the do process of the PDCA cycle). To enact such baseline, both versioning and con-

figuration: intertwine through time, and use traces among versions as well as among

2 https://web.archive.org/web/20061106180520/http://www.ime.uerj.br:80/~vera/WER06/
3 PDCA was made popular by Dr. W. Edwards Deming, who is considered by many to be the

father of modern quality control; however, he always referred to it as the "Shewhart cycle".”

(PDCA entry in Wikipedia)

5

parts (components). The crosscutting of those traces requires a sound implementation

of the baseline configurator.

3 + 7 - The Other Seven Misunderstandings

Besides the failure with respect to evolution, other seven misunderstandings contribute

to the four negative impacts seen at the Introduction. Below, each one of the seven

misunderstandings is detailed.

3.1 Context

Early works on requirements relied on specifications, which, in general, did not con-

sider the representation for context information. However, this failure of dealing with

context has been being dealt by other communities, as for example [21].

Others do not mention the notion of Universe of Discourse, which was coined in the

field of database and reflects the context where the data will interact. Some work just

faintly mentions the world outside of a software system, like for instance: the notion of

interface brought up by use cases, while the concern is the interface of the software

system and not its environment (context).

Jackson [22] specifically noticed this problem and proposed the use of what he

named “Problem Domain”. The name chosen by Jackson is not the best one, since it

makes a confusion with the concept of Domain Knowledge, which may crosscut several

environments (contexts). However, Jackson provided a clear description that there is a

world, part of the real world, which contextualizes requirements to be fulfilled by a

machine (hardware and software).

3.2. Intertwining of Design Levels

When dealing with complex systems with distinct levels of abstractions, sometimes,

the design of one system is the definition of another system that will have to be de-

signed. For instance, when designing a braking system for a car, engineers produce a

design which will be used as definition for the construction of its software part. Maher

[23] uses the idea of design formulation, design synthesis and design evaluation and

mentions their recursive interaction, which is a way of dealing with distinct abstract

design levels.

This intertwining of distinct levels of abstraction does generate much confusion,

mainly when the context is the staged software process. It is interesting to note that the

i* language [24] is one of the very few requirements languages that explicitly supports

this intertwining at a fine grain. One goal can be refined by tasks and a task can be

decomposed in goals.

6

Figura. 1. i* distinct levels of abstraction

In i*, the refinement of a goal into tasks, uses the means-end relationship, which is

not a decomposition with an AND semantics, but a refinement based on the OR/XOR

semantics. As in the example of Figure 1, the more abstract goal is “Article be Re-

viewed”, which is an end, which has a mean the task: “Review Article”. It happens that

“Review Article” is yet at a level of abstraction that needs that different goals be ac-

complished, such as the softgoals: “Just in Time” and “Good”; as well as the goals:

“Article be reviewed” and “Review be Completed”. As such, we have distinct levels

of abstraction in the intertwine of goals and task, keeping in mind that a task is a mean

to achieve a goal, so it is less abstract.

Notwithstanding, this is one of the semantics that is hard to get from the language,

and several papers reporting on i* modeling do not use this as intended by the i* inven-

tor [24]. In i* the means-end relationship is crucial to bring variability to the require-

ments. This difficulty led to a variation of the language [25] in its version 2.0. This

move made it easier the use of i* but has the burden of loosing the capability of inter-

twine different abstract design levels.

3.3. Formalization

No one disagree of the need for formal descriptions. Fighting ambiguity [26] and being

able to automate a give description is central to the effort of requirements, however,

let’s look at this example given by Jackson and Zave [27].

"Able: Two important basic types are student and course. There is also a binary

relation enrolled. If types and relations are formalized as predicates, then.

∀ s ∀ c (enrolled(s, c) =>student(s) ∧ course(c)).

Baker: Do only students enroll in courses? I don’t think that’s true. Able: But

that’s what I mean by student!” [27].

They use this example to stress one of the dark corners of requirements engineering,

which is “grounding formal representations in reality.” So, without a proper ontology

7

[28] to ground terms, formalization is not delivering what is promised. Several pro-

posals based on formal descriptions leave open the grounding of terms.

3.4. Code is King

Over and over, we read and discuss requirements without realizing that by the end of

the day, there will be running code. The phased view of software engineering has cre-

ated an unnecessary gap from requirements to code. The work of Ken Beck [12] made

agile development widely accepted [29], bringing requirements close to code. The prac-

tice that is “on-site customer” is key towards reducing the code-requirements distance.

This is being brought to another dimension with the concept of DevOps [13]. An im-

portant contribution to bridging this gap, is the increasing role of Open Software [30].

On the other hand, the work in requirements monitoring [31] [32] is paying attention

to the problem, by providing a way to compare, at running time, if requirements are

being met. Several years ago, Bill Curtis et al. conducted a study that showed the or-

ganizational distance from customers and coders, and how this impacted the quality of

the process [33].

3.5. Models

Why are models needed? The answer is because with models it is possible to “look

ahead” in the sense that analysis be performed, which makes possible to preview how

an artifact will behave without having to produce it. Models are a key element in engi-

neering design, and they are now supported by a variety of software that help the engi-

neer in designing the model and in analyzing them. General products, like Mathematica

[34] and specific ones, like the products by ANSYS [35] are being used by thousands

of engineers.

However, in software engineering, in general, and in requirements engineering there-

fore, some misunderstand the concept of models and rely on pictures, which may or

may not explain what is intended. An instance of this is the reliance on UML “models”,

which in general are more concerned on syntax details of arrows and boxes instead of

providing a platform for analysis and simulation like the engineering models do. Not-

withstanding, model analysis is provided by both academia [36] and industry [37].

On top of that, there is a clear misunderstanding of the word analysis in general [38].

The word is still commonly used to mean requirements elicitation, instead of the mean-

ing engineering does, that is ways of confirming the model. It is proper to use the “anal-

ysis” term in its strict sense, given that the requirements process is composed of four

main inner processes: Elicitation, Modeling, Analysis, and Managing. In Analysis the

V&V (Verification and Validation) strategies provide the requirements engineer with

support to achieve a quality construction process.

3.6. The Political Game

One of the first steps in requirements engineering is trying to identify the information

sources [39] from which the knowledge needed to construct the models will be elicited.

8

It happens that information sources are not only human beings, but there is also a pleth-

ora of information sources ranging, from laws, environment, hardware, books, regula-

tion, and software. Focusing on just human beings as the providers of information as to

base the elicitation is a faulty procedure.

It is important to mention the increasing attention to the importance of legal com-

pliance [40], which reflects societal concerns [41] with software.

Suppose you need requirements for updating a set of new sensors on the control of

lighting. Information sources will be humans that desire to explore new capabilities of

the sensors, but also the existing software, the environment where the sensors will be,

the software that the vendor supplies and son on. However, what seems to be a crucial

point, not always, completely, understood, is that in the design or re-design a of a

system, there will be different interests at play, and it is not just a matter of understand-

ing that there are different viewpoints [42] but being able to negotiate these different

opinions [43].

G. Percival’s Quest

As stressed in Section 2, above, requirements evolve and co-evolve with software pro-

duction, so in a sense it is a mistake to say that the requirements is complete, due to the

notion of completeness fallacy [44], which is: the requirements is inherently incom-

plete.

However, several books and articles persist in believing that a requirements docu-

ment must be complete. Are they wrong? No. Despite of the completeness fallacy, keep

in mind: a requirements document should be socially acceptable as the basis for argu-

mentation about the software product.

The completeness, in Requirements Engineering sense, is partial but should be suf-

ficient. This is a hard-to-understand concept, for those who like to have all the seman-

tics settled upfront.

4 Transparency

Software is considered transparent if it makes the information it deals with transparent

(information transparency) and if it, itself, is transparent, that is it informs about itself,

how it works, what it does and why (process transparency).

“Transparency is a concept related to information disclosure, having been used in dif-

ferent settings, mostly related to the empowering of citizens with regard to their

rights. The paper argues that, in order to implement transparency, society will need

to address how software deals with this concept.” [45].

In an effort improve our understanding of transparency, our group has been using

the NFR framework [46] as basis for representing the quality of transparency. The

transparency framework posits that are 5 softgoals that help transparency (Accessibil-

ity, Usability, Informativeness, Understandability, and Auditability). Each of these 5

9

softgoals is also helped by other 28 softgoals, totaling 33 softgoals helping transpar-

ency. The semantics of the help, as defined by Chung et al. [46], says that a softgoal

contributes in a positive manner towards another softgoal, which does not depend on

the contribution, but benefits from it.

How does transparency relate to requirements? To answer this question a quote from

Professor John Mylopoulos is key:

“Transparency is an interesting quality because it makes it necessary to attach re-

quirements models to software"

As such, making requirements more transparent and attaching them to software

(code) contributes to (help) the overall quality of requirements, and makes explicit the

options taken by the requirements team, which helps avoiding the other 7 misunder-

standings. Here, we should bear in mind that requirements always exist in a software.

They may be implicit or explicit (transparent), so even when only the source code is

available, we still have the requirements, although implicitly.

The next section (Section 5) sums up the factors (1 + 7) that contributes to require-

ments being a never-ending story. The concept of transparency and the metaphor of

education are used to posit what the community has learnt, but, yet, failed to communi-

cate to the world. Keep in mind: not only the artifact produced is prone to evolution,

but the field itself is a never-ending story.

5 Education

“Education, discipline that is concerned with methods of teaching and learning in

schools or school-like environments as opposed to various nonformal and informal

means of socialization (e.g., rural development projects and education through par-

ent-child relationships). Education can be thought of as the transmission of the values

and accumulated knowledge of a society.” [47].

The educational process must be at hand if the goal of getting someone educated is

to be achieved. If such a process could be summarized, it is proper to say that three

main actors are involved: producers of learning material, educators, and students, with

the goal that students be educated.

In an education system, teachers use resources already available (learning material),

commonly books. Using books and other material, teachers instruct students according

to the common ground knowledge contained in these supporting artifacts. On the other

hand, other actors in the education process, usually called authors, handle the writing

of these supporting learning artifacts. Authors are those who cast the knowledge into

artifacts These authors are often educators, with profound knowledge of the discipline

in question. Teachers use a different sort of strategies as to pass the knowledge from

the supporting material to students, including procedures for feedback control, also

known as exams.

10

Education as a discipline has a long tradition. All major universities worldwide have

a department or a faculty of education. Thousands of conferences worldwide discuss

the theme, and a large number of books is available about the subject.

Let’s try to argue about the similarity of an education process and a Requirements

engineering process. In a Requirements Engineering process, the leading actors are the

requirements engineers. Requirements engineers must elicit knowledge, so they must

learn. Requirements engineers must model what they learned, such that others may use

this knowledge, so they must produce education artifacts. Requirements engineers must

communicate with software developers as to explain the artifacts produced (the require-

ments), as such they “should educate” software developers about the requirements.

 The similarity has limits, since “should educate” is on the limits of “nonformal and

informal means of socialization” among stakeholders4 in the software construction. The

point is that in the role of a requirements engineer, a stakeholder (an actor) should han-

dle “the transmission of the values and accumulated knowledge” to the other stake-

holders, even if one actor has more than one role.

Let’s look at the task of eliciting the knowledge. If this similarity (metaphor) is to

be followed, we are talking about someone that could author a book! So, there is a

heavy responsibility here, and that is why requirements elicitation is hard. Of course,

that the difficulty of the learning process is proportional to the difficulty of the Universe

of Discourse at hand, to the already available materials produced by others and to the

earlier experience of the learner (an actor on the role of a requirements engineer).

How about modeling? Authoring an educational book is known to be difficult, not

only knowledge is needed, but a special skill as to provide the learner with good expla-

nations, examples, exercises. In these cases, of course, that quality control is fundamen-

tal. No one would like to learn from a book with defects. Usually book writers use

natural languages, and here is where the requirements engineer has an edge. Modeling

languages will allow the professional to write models that could be analyzed, but again

just knowing what was elicited isn’t enough, one must master the representation lan-

guage of the model5.

Once the learning material is available, who will teach the students? Note that here

the role of the Requirements Engineer is reversed, that is, now the engineer is the

“teacher”. As such, the engineer is responsible for “the transmission of the values and

accumulated knowledge” to software developers and other interested stakeholders

about what the requirements is all about. In general, this part is missed in the require-

ments engineering process, since there is a wide acceptance that the model (including

here the requirements document) is enough to explain what was learned. Here is where

transparency comes handy. If the model, or the requirements document is built consid-

ering the transparency quality, it will be easier to the stakeholders, even a citizen, to

understand it. Note the use of the word citizen, in the sense that transparency aims to

reach out all kinds of stakeholders.

4 In a software project, stakeholders are a set of actors that sometimes may play more than one

role [48]. So, it is the case that in some cases the coder is the requirements engineer, or the

requirements is the user, or the coder is the user, and so on.
5 It is important to be aware that there is no software without requirements, even if only the code

is available. As said earlier the requirements may be implicit or explicit.

11

How about analysis? How do educators analyze their performance and that of stu-

dents? Exams is usually the feedback control for both students and educators, since

evaluation, in general, is based on scores obtained by students on standard exams, but

also they are a direct feedback to students on what has been learned. Requirements

Engineers use analysis techniques to obtain feedback, some of these techniques involve

other stakeholders and are usually classified as validation techniques [49], ones that

feedback comes from the outside, but other type of techniques, classified as verification

techniques [50], makes it possible that Requirements Engineers, by themselves, verify

the written models. With respect to feedback, the availability of representation lan-

guages and proper analysis techniques is an edge to Requirements Engineers. However,

these languages and analysis techniques are still not as popular as needed, being seldom

used by the software development industry.

So, what is the purpose of using this similarity as a metaphor? What is new here? It

is a belief of this paper, that there are four major advantages of studying this metaphor

in more detail.

1) It makes clear that requirements engineering, as a field, and requirements

documents are a never-ending story. Education is about bringing

knowledge to the masses, and knowledge is being produced by research

in a continuous fashion.

2) Requirements Engineering is hard, if a field as old as Education is still

going through revolutions, requirements engineering as a field has a lot to

cover.

3) The metaphor makes it easier to see why transparency is important for

requirements. More participation on the understanding of requirements,

the better the requirements will be. This brings up the importance of col-

laboration [30] in the process of producing requirements.

4) The metaphor opens new ways to think about Requirements Engineering

and to learn from the Education field, that has been exploring similar

quests for a long time.

6 Conclusion

Let’s recap the purpose of this paper: stress that evolution is key to requirements engi-

neering, point out several factors that lead to problems in the production of require-

ments as a software artifact, and the proposal of a metaphor with the field of Education.

The contribution relies on revising literature that deals with these identified misunder-

standings and on proposing a metaphor that helps the overall understanding of the field,

the profession, and of new research paths.

This paper by its own classification, is a vision paper, holds several beliefs of the

author, which are justified by argumentation and as such is prone to bring discussions,

which is just the usual goal of scientific meetings.

Other work has been published discussing the area of Requirements Engineering in

general [51], [52]. The work of Jarke et al. [52] is of special mention because it also

points out some of the misunderstandings listed above. In this paper [52] the authors

12

point out four new principles that should give a north to Requirements Engineering,

these principles are:

“(1) intertwining of requirements with implementation and organizational con-

texts, (2) dynamic evolution of requirements, (3) emergence of architectures as a crit-

ical stabilizing force, and (4) need to recognize unprecedented levels of design com-

plexity.” [52].

The paper has dealt with (1) in Context and Code is Key, dealt with (2) in 1, dealt

with (3) in Intertwining of Design Levels and in Models and dealt with (4) in The Po-

litical Game. The paper adds to the discussion and to an overall comprehension of the

field, stressing its challenges vis a vis a comparison to the field of Education. Future

challenges are of varied shapes.There is a folk story that goes like this:

“A Japanese factory was struggling to find out a defect in the production of a fine

mechanics product, but all the analysis performed by the engineers has failed. Due to

the persistent and continuous problem the management resolved to involve all the em-

ployees in trying to solve the problem. As such, the engineers prepared a concise paper

explaining the problem, when it occurred, and what was the consequence of the prob-

lem to the company. It happens that one person working as a secretary found out that

the times the problem occurred where exactly the times that the fast train would pass

by the factory. This was reported to the management, who passed it to the engineers.

At first, they did not think it was useful, since the sensors were not detecting any dis-

crepancies, but when they stop to look in more detail, they found out, that yes, the fast

trains were causing the problem”.

This story is used over and over to exemplify why sharing information is beneficial,

if one wants to find problems. Open-source software development has been profiting

from this philosophy (more eyeballs), and some believe it is key to their success.

As such, keeping transparency as a softgoal should provide benefits, as more and

more people will have access and can understand requirements. As argued, the better

exploration of the Education metaphor will lead to address the fact that requirements

engineers are not taught to function as communicators. Research could help by provid-

ing ways that requirements engineers have techniques borrowed from Education [53].

Improving communication, a key capability to educators, will help the gap among the

different stakeholders related to software.

Acknowledgement

The author thanks the partial support of CNPq and CAPES.

13

References

1. Brooks, F. P., 'A Science of Design' is a Misled and Misleading Goal’ In Dagstul 08412

Workshop: Science of Design, 2009 (http://drops.dagstuhl.de/opus/volltexte/2009/1976/)

2. Furtado, A. L. "Analogy by generalization—and the quest of the grail." ACM Sigplan No-

tices 27.1 (1992).

3. Ende, M., The Neverending Story, Dutton Juvenile; Revised edition (March 1, 1997)

4. https://en.wikipedia.org/wiki/The_NeverEnding_Story_(film)

5. https://www.warnerbros.com/movies/inception

6. Journal of Consciousness Studies, https://www.imprint.co.uk/product/jcs/

7. https://standards.ieee.org/ieee/830/1222/

8. https://www.computer.org/education/bodies-of-knowledge/software-engineering

9. Boehm, B. W.: A Spiral Model of Software Development and Enhancement. IEEE Com-

puter 21(5): 61-72 (1988)

10. Basili, V.R., Turner, A. J.: Iterative Enhancement: A Practical Technique for Software De-

velopment. IEEE Trans. Software Eng. 1(4): 390-396 (1975)

11. Smith, M.F.: Software Prototyping: Adoption, Practice and Management. McGraw-Hill,

London (1991).

12. Beck, K. Extreme Programming, Addison Wesley, 2000.

13. Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. Ieee Software, 33(3),

94-100.

14. Davis, G. B.: Strategies for Information Requirements Determination. IBM Systems Journal

21(1): 4-30 (1982)

15. http://catless.ncl.ac.uk/Risks/

16. https://spectrum.ieee.org/why-software-fails

17. Breitman, K. K. ; Leite, J. C. S. P. ; Finkelstein, A. . The World´s a Stage: A Survey on

Requirements Engineering using a Real-Life Case Study. Journal of the Brazilian Computer

Society, Brasil, v. 6, n. 1, p. 13-37, 1999.

18. Berry, D.M., Czarnecki, K., Antkiewicz, M. , AbdelRazik, M.: Requirements Determination

is Unstoppable: An Experience Report. RE 2010: 311-316

19. Habibullah, K. M., & Horkoff, J.: Non-functional requirements for machine learning: un-

derstanding current use and challenges in industry. In IEEE RE Proc. , 2021. (pp. 13-23).

20. Leite,J.C.S.P.; Rossi, G. ; Balaguer, F. ; Maiorana, V. ; Kaplan, G. ; Hadad, G.; Oliveros,

A.: Enhancing a requirements baseline with scenarios. Requirements Engineering Journal,

v. 2, n. 4, p. 184-198, 1997.

21. Akman, V., Bouquet, P., Thomason, R.H., Young, R.A.: Modeling and Using Context, In

3th International and Interdisciplinary Conference, CONTEXT, Proc. Springer 2001.

22. Jackson, M. Some Basic Tenets of Description http://mcs.open.ac.uk/mj665/SoSym06.pdf

23. Maher, M.L.: Process Models for Design Synthesis. AI Magazine 11(4): 49-58 (1990)

24. Yu, E. : Modeling strategic relationships for process reengineering. Dissertation, University

of Toronto, Graduate Department of Computer Science, pp 124, (1994).

25. Dalpiaz, F., Franch, X., & Horkoff, J. (2016). istar 2.0 language guide. arXiv preprint

arXiv:1605.07767.

26. Berry, D. M., Kamsties, E.: Ambiguity in requirements specification. In J. Leite and J.

Doorn, editors, Perspectives on Requirements Engineering, pp. 7–44. Kluwer, 2004.

27. Zave, P. and Jackson, M. : Four dark corners of requirements engineering. ACM Trans.

Softw. Eng. Methodol. 6, 1 (1997), 1-30.

28. Breitman, K. K.; Leite, J. C. S. P.: Ontology as a Requirements Engineering Product. In:

Proc. of the 11th IEEE RE, IEEE Computer Society Press, p. 309-319, 2003.

http://catless.ncl.ac.uk/Risks/

14

29. Hoda, R., Salleh, N., & Grundy, J. (2018). The rise and evolution of agile software devel-

opment. IEEE software, 35(5), 58-63.

30. do Prado Leite, J. C. S.: The prevalence of code over models: Turning it around with trans-

parency. In IEEE 8th MoDRE (pp. 56-57), 2018.

31. Fickas, S., Feather M.S.: Requirements monitoring in dynamic environments. In IEEE RE,

1995.

32. Lemos, R. et al. "Software engineering for self-adaptive systems: A second research

roadmap." Software engineering for self-adaptive systems II. Springer, Berlin, Heidelberg,

2013. 1-32.

33. Curtis, B., Krasner H., and Iscoe, N.: A field study of the software design process for large

systems. Commun. ACM 31, 11 (1988), 1268-1287.

34. https://www.wolfram.com/mathematica/

35. https://www.ansys.com/

36. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Meth-

odol. 11(2): 256-290 (2002).

37. https://www.ibm.com/support/pages/ibm-rational-statemate-46

38. Leite, J.C.S.P.: "Understanding the word 'analysis' in the context of Requirements Engineer-

ing." Journal of Computer Science & Technology, vol. 5, no. 2, Aug. 2005, p. 107.

39. Leite, J.C.S.P, Moraes, E.A., Castro, C.E.P.S.: A Strategy for Information Source Identifi-

cation. WER 2007: 25-34.

40. Engiel, P., Leite, J.C.S.P., & Mylopoulos, J. : A tool-supported compliance process for soft-

ware systems. In IEEE 11th RCIS (pp. 66-76). 2017.

41. https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/digital-mar-

kets-act-ensuring-fair-and-open-digital-markets_en#

42. Leite, J. C. S. D. P.: Viewpoints on viewpoints. In ISAW-2, Viewpoints' 96 on SIGSOFT'96

Workshops (pp. 285-288), 1996.

43. Jureta, I., Mylopoulos, J., Faulkner, S.: Analysis of Multi-Party Agreement in Requirements

Validation. RE 2009: 57-66.

44. Arango, G., Freeman, P. Application of Artificial Intelligence, ACM Sigosoft Notes, Vol.

13, N.1,32-38, Jan. 1988.

45. Leite, J.C.S.P., Cappelli, C.: Software Transparency. Business & Information Systems En-

gineering 2(3), 2010.

46. Chung L, Nixon B, Yu E, Mylopoulos J.: Non-functional requirements in software engineer-

ing. Kluwer, Norwell, 2000.

47. https://www.britannica.com/topic/education

48. Hadad, G.D.S., Doorn,J.D., and Leite, J.C.S.P.. "Requirements authorship: a family process

pattern."IEEE 25th REW., 2017.

49. Sarmiento, E., do Prado Leite, J. C. S., & Almentero, E. : C&L: Generating model based test

cases from natural language requirements descriptions. In 2014 IEEE 1st RET (2014).

50. Sebastián, A., Hadad, G.D.S., Robledo, E.: Inspección centrada en Omisiones y Ambigüe-

dades de un Modelo Léxico. In WER, 2017. https://dblp.org/rec/conf/wer/SebastianHR17

51. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. ICSE - Future of SE

Track 2000: 35-46

52. Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., Robinson, W.N.: The brave new

world of design requirements. Inf. Syst. 36(7): 992-1008 (2011).

53. Monsalve, E., Werneck, V., & Leite, J. C. S. P. (2013). Incorporando transparência na ped-

agogia através do uso de jogos para ensino. Anais do XXVII Simpósio Brasileiro de Engen-

haria de Software (SBES), Brasília, 75-80.

https://www.britannica.com/topic/education

